Atomic scale friction, an indispensable element of nanotechnology, requires a direct access to, under actual growing shear stress, its successive live phases: from static pinning, to depinning and transient evolution, eventually ushering in steady state kinetic friction. Standard tip-based atomic force microscopy generally addresses the steady state, but the prior intermediate steps are much less explored. Here we present an experimental and simulation approach, where an oscillatory shear force of increasing amplitude leads to a one-shot investigation of all these successive aspects. Demonstration with controlled gold nanocontacts sliding on graphite uncovers phenomena that bridge the gap between initial depinning and large speed sliding, of potential relevance for atomic scale time and magnitude dependent rheology.

Amplitude nanofriction spectroscopy

Vanossi, Andrea;Tosatti, Erio;
2021

Abstract

Atomic scale friction, an indispensable element of nanotechnology, requires a direct access to, under actual growing shear stress, its successive live phases: from static pinning, to depinning and transient evolution, eventually ushering in steady state kinetic friction. Standard tip-based atomic force microscopy generally addresses the steady state, but the prior intermediate steps are much less explored. Here we present an experimental and simulation approach, where an oscillatory shear force of increasing amplitude leads to a one-shot investigation of all these successive aspects. Demonstration with controlled gold nanocontacts sliding on graphite uncovers phenomena that bridge the gap between initial depinning and large speed sliding, of potential relevance for atomic scale time and magnitude dependent rheology.
2021
Istituto Officina dei Materiali - IOM -
gold nanocontacts, nanotribology, static and kinetic friction, AFM, simulation
File in questo prodotto:
File Dimensione Formato  
Nanoscale_13_1955_2021 Vanossi.pdf

solo utenti autorizzati

Descrizione: articolo
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/525043
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact