Atomic scale friction, an indispensable element of nanotechnology, requires a direct access to, under actual growing shear stress, its successive live phases: from static pinning, to depinning and transient evolution, eventually ushering in steady state kinetic friction. Standard tip-based atomic force microscopy generally addresses the steady state, but the prior intermediate steps are much less explored. Here we present an experimental and simulation approach, where an oscillatory shear force of increasing amplitude leads to a one-shot investigation of all these successive aspects. Demonstration with controlled gold nanocontacts sliding on graphite uncovers phenomena that bridge the gap between initial depinning and large speed sliding, of potential relevance for atomic scale time and magnitude dependent rheology.
Amplitude nanofriction spectroscopy
Vanossi, Andrea;Tosatti, Erio;
2021
Abstract
Atomic scale friction, an indispensable element of nanotechnology, requires a direct access to, under actual growing shear stress, its successive live phases: from static pinning, to depinning and transient evolution, eventually ushering in steady state kinetic friction. Standard tip-based atomic force microscopy generally addresses the steady state, but the prior intermediate steps are much less explored. Here we present an experimental and simulation approach, where an oscillatory shear force of increasing amplitude leads to a one-shot investigation of all these successive aspects. Demonstration with controlled gold nanocontacts sliding on graphite uncovers phenomena that bridge the gap between initial depinning and large speed sliding, of potential relevance for atomic scale time and magnitude dependent rheology.File | Dimensione | Formato | |
---|---|---|---|
Nanoscale_13_1955_2021 Vanossi.pdf
solo utenti autorizzati
Descrizione: articolo
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.94 MB
Formato
Adobe PDF
|
1.94 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.