Traditional von Neumann computers have separate processing and memory units. This necessitates frequent shuttling of data between these units when performing computational tasks. The resulting latency and energy cost is a key challenge especially given the recent explosive growth in highly data-centric applications such as those related to artificial intelligence. In-memory computing is an emerging non-von Neumann paradigm where certain computational tasks are performed in the memory itself by exploiting the physical attributes of the memory devices. Memristive devices that store information in terms of their resistance values are particularly well suited for in-memory computing. These devices when organized within a computational memory unit can be used to perform a range of tasks from logical and arithmetic operations to stochastic computing. In this chapter we introduce this topic with an emphasis on the key physical attributes of memristive devices that facilitate in-memory computing. We also present a future outlook highlighting some of the challenges and device-level requirements.

Memristive devices as computational memory

Spiga S.
2020

Abstract

Traditional von Neumann computers have separate processing and memory units. This necessitates frequent shuttling of data between these units when performing computational tasks. The resulting latency and energy cost is a key challenge especially given the recent explosive growth in highly data-centric applications such as those related to artificial intelligence. In-memory computing is an emerging non-von Neumann paradigm where certain computational tasks are performed in the memory itself by exploiting the physical attributes of the memory devices. Memristive devices that store information in terms of their resistance values are particularly well suited for in-memory computing. These devices when organized within a computational memory unit can be used to perform a range of tasks from logical and arithmetic operations to stochastic computing. In this chapter we introduce this topic with an emphasis on the key physical attributes of memristive devices that facilitate in-memory computing. We also present a future outlook highlighting some of the challenges and device-level requirements.
2020
Istituto per la Microelettronica e Microsistemi - IMM
9780081027820
In-memory computing
Memristive devices
File in questo prodotto:
File Dimensione Formato  
Chapter6-Memristive-devices-as-computational-memory.pdf

non disponibili

Descrizione: versione pdf del capitolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 470.08 kB
Formato Adobe PDF
470.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/525102
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact