Perovskite technology has been advancing at unprecedented levels over the past years, with efficiencies reaching up to 26.1%. State-of-the-art results are obtained on a very small area scale (<0.1 cm 2 ), by adopting high materials wasting processes not compatible with industry and with market exploitation. Silicon is a well-established technology and one of the advantages of perovskite is its ability to pair with silicon forming a tandem device that extracts charges reducing transmission and thermalization losses. In this work, we focused on finding a strategy to fabricate 15.2 × 15.2 cm 2 perovskite modules by using blade/slot-die coating and avoiding any spin coating deposition. Furthermore, we optimized the indium tin oxide top electrode deposition by adjusting the sputtering process and buffer layer deposition; finally, we focused on light management by applying an antireflective coating. We obtained a semitransparent and a tandem silicon–perovskite module in a four-terminal (4T) configuration over 225 cm 2 (4T configuration) with 13.18% and 20.91% efficiency, respectively, passing International Summit on Organic PV Stability ISOS-L1 (under continuous light soaking in the air) test with a remarkable T 80 of 1459 h.
Semitransparent Perovskite Solar Submodule for 4T Tandem Devices: Industrial Engineering Route Toward Stable Devices
Di Carlo A.
2024
Abstract
Perovskite technology has been advancing at unprecedented levels over the past years, with efficiencies reaching up to 26.1%. State-of-the-art results are obtained on a very small area scale (<0.1 cm 2 ), by adopting high materials wasting processes not compatible with industry and with market exploitation. Silicon is a well-established technology and one of the advantages of perovskite is its ability to pair with silicon forming a tandem device that extracts charges reducing transmission and thermalization losses. In this work, we focused on finding a strategy to fabricate 15.2 × 15.2 cm 2 perovskite modules by using blade/slot-die coating and avoiding any spin coating deposition. Furthermore, we optimized the indium tin oxide top electrode deposition by adjusting the sputtering process and buffer layer deposition; finally, we focused on light management by applying an antireflective coating. We obtained a semitransparent and a tandem silicon–perovskite module in a four-terminal (4T) configuration over 225 cm 2 (4T configuration) with 13.18% and 20.91% efficiency, respectively, passing International Summit on Organic PV Stability ISOS-L1 (under continuous light soaking in the air) test with a remarkable T 80 of 1459 h.File | Dimensione | Formato | |
---|---|---|---|
Semitransparent_Perovskite_Solar_Submodule_for_4T_Tandem_Devices_Industrial_Engineering_Route_Toward_Stable_Devices.pdf
accesso aperto
Descrizione: Accettato per la pubblicazione
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
2.18 MB
Formato
Adobe PDF
|
2.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.