The ferrozine (FZ) assay is a vital oxidation state-specific colorimetric assay for the quantification of Fe2+ ions in environmental samples due to its sharp increase in absorbance at 562 nm upon addition of Fe2+. However, it has yet to be applied to corresponding fluoresence assays which typically offer higher sensitivites and lower detection limits. In this article we present for the first time its pairing with upconverting luminescent nanomaterials to enable detection of Fe2+via the inner filter effect using a low-power continuous wave diode laser (45 mW). Upon near infra-red excitation at 980 nm, the overlap of the upconversion emission of Er3+ at approximately 545 nm and the absorbance of the FZ:Fe2+ complex at 562 nm enabled measurement in the change of UCNP emission response as a function of Fe2+ concentration in a ratiometric manner. We first applied large, ultra-bright poly(acrylic acid) (PAA)-capped Gd2O2S:Yb3+,Er3+ UCNPs upconverting nanoparticles (UCNPs) for the detection of Fe2+ using FZ as the acceptor. The probe displayed good selectivity and sensitivity for Fe2+, with a low limit of detection (LoD) of 2.74 μM. Analogous results employing smaller (31 nm) PAA-capped hexagonal-phase NaYF4:Yb3+,Er3+ UCNPs synthesised in our lab were achieved, with a lower LoD towards Fe2+ of 1.43 μM. These results illustrate how the ratiometric nature of the system means it is applicable over a range of particle sizes, brightnesses and nanoparticle host matrices. Preliminary investigations also found the probes capable of detecting micromolar concentrations of Fe2+ in turbid solutions.

Development of an Fe2+sensing system based on the inner filter effect between upconverting nanoparticles and ferrozine

Natile, Marta M.;
2023

Abstract

The ferrozine (FZ) assay is a vital oxidation state-specific colorimetric assay for the quantification of Fe2+ ions in environmental samples due to its sharp increase in absorbance at 562 nm upon addition of Fe2+. However, it has yet to be applied to corresponding fluoresence assays which typically offer higher sensitivites and lower detection limits. In this article we present for the first time its pairing with upconverting luminescent nanomaterials to enable detection of Fe2+via the inner filter effect using a low-power continuous wave diode laser (45 mW). Upon near infra-red excitation at 980 nm, the overlap of the upconversion emission of Er3+ at approximately 545 nm and the absorbance of the FZ:Fe2+ complex at 562 nm enabled measurement in the change of UCNP emission response as a function of Fe2+ concentration in a ratiometric manner. We first applied large, ultra-bright poly(acrylic acid) (PAA)-capped Gd2O2S:Yb3+,Er3+ UCNPs upconverting nanoparticles (UCNPs) for the detection of Fe2+ using FZ as the acceptor. The probe displayed good selectivity and sensitivity for Fe2+, with a low limit of detection (LoD) of 2.74 μM. Analogous results employing smaller (31 nm) PAA-capped hexagonal-phase NaYF4:Yb3+,Er3+ UCNPs synthesised in our lab were achieved, with a lower LoD towards Fe2+ of 1.43 μM. These results illustrate how the ratiometric nature of the system means it is applicable over a range of particle sizes, brightnesses and nanoparticle host matrices. Preliminary investigations also found the probes capable of detecting micromolar concentrations of Fe2+ in turbid solutions.
2023
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
upconverting nanoparticles
luminescence
ferrozine
Fe2+ sensor
File in questo prodotto:
File Dimensione Formato  
RCSAdv2023_13_26313.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 884.33 kB
Formato Adobe PDF
884.33 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/525262
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact