A detailed structural characterization of ZnSe/ZnMgSe multiple quantum wells (MQWs) grown on GaAs by low pressure metalorganic vapour phase epitaxy is presented. ZnSe/Zn0.83Mg0.17Se MQWs having between 6 and 12 periods were deposited at 330°C and 304mbar reactor pressure on (100)GaAs after a 4.2nm ZnSe buffer layer. The MQWs had nominal 4.4nm thick ZnSe wells and 5.3nm thick Zn0.83Mg0.17Se barriers. The MQW structural properties were investigated by high-resolution X-ray diffraction (HRXRD) and X-ray specular reflectivity (XSR) measurements. Besides the MQWs-substrate mismatch, simulation of the HRXRD and XSR patterns allowed to determine the MQW period, individual layer thickness and barrier composition. Between 8 and 10 periods the MQW structure begins to relax, its critical thickness on GaAs being between 92 and 113nm. Furthermore, HRXRD showed broader zeroth and first-order satellite peaks with increasing MQW periods, a result ascribed to strain fluctuations induced by either inhomogeneous Mg incorporation in the ZnSe lattice and/or interface roughening. Comparison of experimental and simulated XSR patterns allowed to determine the rms roughness at each multilayer interface, which linearly increases along the growth direction due to a cumulative intrinsic roughening.

Structural characterization of znse/znmgse mqws grown on (100) gaas by low pressure MOVPE

2002

Abstract

A detailed structural characterization of ZnSe/ZnMgSe multiple quantum wells (MQWs) grown on GaAs by low pressure metalorganic vapour phase epitaxy is presented. ZnSe/Zn0.83Mg0.17Se MQWs having between 6 and 12 periods were deposited at 330°C and 304mbar reactor pressure on (100)GaAs after a 4.2nm ZnSe buffer layer. The MQWs had nominal 4.4nm thick ZnSe wells and 5.3nm thick Zn0.83Mg0.17Se barriers. The MQW structural properties were investigated by high-resolution X-ray diffraction (HRXRD) and X-ray specular reflectivity (XSR) measurements. Besides the MQWs-substrate mismatch, simulation of the HRXRD and XSR patterns allowed to determine the MQW period, individual layer thickness and barrier composition. Between 8 and 10 periods the MQW structure begins to relax, its critical thickness on GaAs being between 92 and 113nm. Furthermore, HRXRD showed broader zeroth and first-order satellite peaks with increasing MQW periods, a result ascribed to strain fluctuations induced by either inhomogeneous Mg incorporation in the ZnSe lattice and/or interface roughening. Comparison of experimental and simulated XSR patterns allowed to determine the rms roughness at each multilayer interface, which linearly increases along the growth direction due to a cumulative intrinsic roughening.
2002
Istituto per la Microelettronica e Microsistemi - IMM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/52543
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact