Animal models of human pathologies, including naturally occurring, induced, or engineered animals, are valuable tools for understanding the physiopathology of the disease and discovering novel therapeutic targets and drugs. In fact, although scientific research has always relied on the use of cell cultures, information that is obtained through in vitro studies can be extrapolated to the biomedical research only when analyzed within a complex organism with metabolic functioning. Therefore, one avenue holding tremendous potential to find therapies against human diseases is the use of intact living systems, where complex biological processes can be examined. However, all animal models of human disease have embedded limitations. Some of these limitations are due to the differences between animals and humans. The normal anatomy and physiology of an organ can differ among species. Furthermore, certain species may not be suitable for modelling some aspects of human disease. Moreover, most laboratory animals are kept in highly controlled environments with limited exposure to environmental pathogens that may affect innate responses to pathological processes. Finally, while inbreeding has the advantage of producing genetically identical offspring leading to highly reproducible experimental findings, it also may produce strain-specific phenotypes that are not relevant outside of that strain. Despite all these limitations, there are still many advantages in animal studies. As any clinical investigator is well aware, the rate of human studies is slow, the majority of human tissues is not routinely accessible for research purposes, and there is a very limited opportunity for interventional studies. By contrast, large numbers of animals (especially rodents) can be bred and studied in short time periods, interventional studies are easy to do, and established and emerging tools for targeted manipulation of levels of gene expression facilitate insight into the function of mediators in both health and disease.

Animal models of human pathology

Fedele M.
;
2011

Abstract

Animal models of human pathologies, including naturally occurring, induced, or engineered animals, are valuable tools for understanding the physiopathology of the disease and discovering novel therapeutic targets and drugs. In fact, although scientific research has always relied on the use of cell cultures, information that is obtained through in vitro studies can be extrapolated to the biomedical research only when analyzed within a complex organism with metabolic functioning. Therefore, one avenue holding tremendous potential to find therapies against human diseases is the use of intact living systems, where complex biological processes can be examined. However, all animal models of human disease have embedded limitations. Some of these limitations are due to the differences between animals and humans. The normal anatomy and physiology of an organ can differ among species. Furthermore, certain species may not be suitable for modelling some aspects of human disease. Moreover, most laboratory animals are kept in highly controlled environments with limited exposure to environmental pathogens that may affect innate responses to pathological processes. Finally, while inbreeding has the advantage of producing genetically identical offspring leading to highly reproducible experimental findings, it also may produce strain-specific phenotypes that are not relevant outside of that strain. Despite all these limitations, there are still many advantages in animal studies. As any clinical investigator is well aware, the rate of human studies is slow, the majority of human tissues is not routinely accessible for research purposes, and there is a very limited opportunity for interventional studies. By contrast, large numbers of animals (especially rodents) can be bred and studied in short time periods, interventional studies are easy to do, and established and emerging tools for targeted manipulation of levels of gene expression facilitate insight into the function of mediators in both health and disease.
2011
Istituto di Endocrinologia e Oncologia Sperimentale ''G. Salvatore'' - IEOS
animal models; human disease
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/525453
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact