The rapid development of artificial neural networks and applied artificial intelligence has led to many applications. However, current software implementation of neural networks is severely limited in terms of performance and energy efficiency. It is believed that further progress requires the development of neuromorphic systems, in which hardware directly mimics the neuronal network structure of a human brain. Here, we propose theoretically and realize experimentally an optical network of nodes performing binary operations. The nonlinearity required for efficient computation is provided by semiconductor microcavities in the strong quantum light-matter coupling regime, which exhibit exciton-polariton interactions. We demonstrate the system performance against a pattern recognition task, obtaining accuracy on a par with state-of-the-art hardware implementations. Our work opens the way to ultrafast and energy-efficient neuromorphic systems taking advantage of ultrastrong optical nonlinearity of polaritons.

Neuromorphic Binarized Polariton Networks

Comaron, P;Ballarini, D;Sanvitto, D;
2021

Abstract

The rapid development of artificial neural networks and applied artificial intelligence has led to many applications. However, current software implementation of neural networks is severely limited in terms of performance and energy efficiency. It is believed that further progress requires the development of neuromorphic systems, in which hardware directly mimics the neuronal network structure of a human brain. Here, we propose theoretically and realize experimentally an optical network of nodes performing binary operations. The nonlinearity required for efficient computation is provided by semiconductor microcavities in the strong quantum light-matter coupling regime, which exhibit exciton-polariton interactions. We demonstrate the system performance against a pattern recognition task, obtaining accuracy on a par with state-of-the-art hardware implementations. Our work opens the way to ultrafast and energy-efficient neuromorphic systems taking advantage of ultrastrong optical nonlinearity of polaritons.
2021
Istituto di Nanotecnologia - NANOTEC - Sede Lecce
binary network
exciton-polaritons
microcavities
nonlinear optics
semiconductors
File in questo prodotto:
File Dimensione Formato  
mirek-et-al-2021-neuromorphic-binarized-polariton-networks.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.46 MB
Formato Adobe PDF
2.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/525496
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 50
social impact