We study a four-component polariton system in the optical parametric oscillator regime consisting of exciton, photon, signal, and idler modes across the Berezinskii-Kosterlitz-Thouless (BKT) transition. We show that all four components share the same BKT critical point, and algebraic decay of spatial coherence with the same critical exponent. However, while the collective excitations in different components are strongly locked, both close to and far from criticality, the spontaneous creation of topological defects in the vicinity of the phase transition is found to be largely independent of the intercomponent mode locking, and instead strongly dependent on the density within a given mode. This peculiar characteristic allows us to reveal a novel state of matter, characterized by configurations of topological defects proliferating on top of a superfluid with algebraic decay of coherence, observation of which is demonstrated to be within reach of current experiments.

Unconventional Berezinskii-Kosterlitz-Thouless Transition in the Multicomponent Polariton System

Comaron P.;
2023

Abstract

We study a four-component polariton system in the optical parametric oscillator regime consisting of exciton, photon, signal, and idler modes across the Berezinskii-Kosterlitz-Thouless (BKT) transition. We show that all four components share the same BKT critical point, and algebraic decay of spatial coherence with the same critical exponent. However, while the collective excitations in different components are strongly locked, both close to and far from criticality, the spontaneous creation of topological defects in the vicinity of the phase transition is found to be largely independent of the intercomponent mode locking, and instead strongly dependent on the density within a given mode. This peculiar characteristic allows us to reveal a novel state of matter, characterized by configurations of topological defects proliferating on top of a superfluid with algebraic decay of coherence, observation of which is demonstrated to be within reach of current experiments.
2023
Istituto di Nanotecnologia - NANOTEC - Sede Lecce
polaritons
phase transitions
File in questo prodotto:
File Dimensione Formato  
PhysRevLett.130.136001.pdf

non disponibili

Descrizione: main text
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.27 MB
Formato Adobe PDF
2.27 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
supp_mat.pdf

non disponibili

Descrizione: supplemental
Tipologia: Altro materiale allegato
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 5.11 MB
Formato Adobe PDF
5.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/525500
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact