Organic room temperature phosphorescent (ORTP) materials with stimuli-responsive, multicomponent emissive behaviour are extremely desirable for various applications. The derivative of cyclic triimidazole (TT) functionalized with an ethynyl group, TT-CCH, is isolated and investigated. The compound possesses crystallization-enhanced emission (CEE) comprising dual fluorescence and dual phosphorescence of both molecular and supramolecular origin with aggregation-induced components highly sensitive to grinding. The mechanisms involved in the emissions have been disclosed thanks to combined structural, spectroscopic and computational investigations. In particular, strong CH⋯N hydrogen bonds are deemed responsible, for the first time in the TT family, together with frequently observed π⋯π stacking interactions, for the aggregated fluorescence and phosphorescence.

3-Ethynyltriimidazo[1,2-a:1′,2′-c:1″,2″-e][1,3,5]triazine Dual Short- and Long-Lived Emissions with Crystallization-Enhanced Feature: Role of Hydrogen Bonds and π-π Interactions

Malpicci, Daniele;Lucenti, Elena;Marinotto, Daniele;Botta, Chiara;Bellina, Fabio;Cariati, Elena
;
Forni, Alessandra
2024

Abstract

Organic room temperature phosphorescent (ORTP) materials with stimuli-responsive, multicomponent emissive behaviour are extremely desirable for various applications. The derivative of cyclic triimidazole (TT) functionalized with an ethynyl group, TT-CCH, is isolated and investigated. The compound possesses crystallization-enhanced emission (CEE) comprising dual fluorescence and dual phosphorescence of both molecular and supramolecular origin with aggregation-induced components highly sensitive to grinding. The mechanisms involved in the emissions have been disclosed thanks to combined structural, spectroscopic and computational investigations. In particular, strong CH⋯N hydrogen bonds are deemed responsible, for the first time in the TT family, together with frequently observed π⋯π stacking interactions, for the aggregated fluorescence and phosphorescence.
2024
Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC - Sede Secondaria Milano - Via C. Golgi
Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
crystallization-enhanced emission
dual emission
organic room temperature phosphorescence
supramolecular interactions
File in questo prodotto:
File Dimensione Formato  
Molecules 2024, p.1967.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.43 MB
Formato Adobe PDF
2.43 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/525519
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact