Let X = {X-1, X-2,..., X-m} be a system of smooth vector fields in R-n satisfying the Hormander's finite rank condition. We prove the following Sobolev inequality with reciprocal weights in Carnot-Caratheodory space G associated to system X(1/integral(BR) K(x) dx integral(BR) vertical bar u vertical bar(t) K (x) dx)(1/t) <= C R (1/integral(BR) 1/K(x) dx integral(BR) vertical bar Xu vertical bar(2)/K(x) dx)(1/2),where Xu denotes the horizontal gradient of u with respect to X. We assume that the weight K belongs to Muckenhoupt's class A(2) and Gehring's class G tau, where tau is a suitable exponent related to the homogeneous dimension.

A two-weight Sobolev inequality for Carnot-Carathéodory spaces

Alberico A.;
2022

Abstract

Let X = {X-1, X-2,..., X-m} be a system of smooth vector fields in R-n satisfying the Hormander's finite rank condition. We prove the following Sobolev inequality with reciprocal weights in Carnot-Caratheodory space G associated to system X(1/integral(BR) K(x) dx integral(BR) vertical bar u vertical bar(t) K (x) dx)(1/t) <= C R (1/integral(BR) 1/K(x) dx integral(BR) vertical bar Xu vertical bar(2)/K(x) dx)(1/2),where Xu denotes the horizontal gradient of u with respect to X. We assume that the weight K belongs to Muckenhoupt's class A(2) and Gehring's class G tau, where tau is a suitable exponent related to the homogeneous dimension.
2022
Istituto per le applicazioni del calcolo - IAC - Sede Secondaria Napoli
Carnot-Caratheodory spaces
Weighted Sobolev inequalities
Muckenhoupt and Gehring weights
File in questo prodotto:
File Dimensione Formato  
s11587-020-00543-3.pdf

accesso aperto

Licenza: Creative commons
Dimensione 322.88 kB
Formato Adobe PDF
322.88 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/525661
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact