Spatial color algorithms (SCAs) are algorithms grounded in the retinex theory of color sensation that, mimicking the human visual system, perform image enhancement based on the spatial arrangement of the scene. Despite their established role in image enhancement, their potential as dequantizers has never been investigated. Here, we aim to assess the effectiveness of SCAs in addressing the dual objectives of color dequantization and image enhancement at the same time. To this end, we propose the term dequantenhancement. In this paper, through two experiments on a dataset of images, SCAs are evaluated through two distinct pathways: first, quantization followed by filtering to assess both dequantization and enhancement; and second, filtering applied to original images before quantization as further investigation of mainly the dequantization effect. The results are presented both qualitatively, with visual examples, and quantitatively, through metrics including the number of colors, retinal-like subsampling contrast (RSC), and structural similarity index (SSIM).

Dequantenhancement by spatial color algorithms

Ramella G.
Secondo
;
2024

Abstract

Spatial color algorithms (SCAs) are algorithms grounded in the retinex theory of color sensation that, mimicking the human visual system, perform image enhancement based on the spatial arrangement of the scene. Despite their established role in image enhancement, their potential as dequantizers has never been investigated. Here, we aim to assess the effectiveness of SCAs in addressing the dual objectives of color dequantization and image enhancement at the same time. To this end, we propose the term dequantenhancement. In this paper, through two experiments on a dataset of images, SCAs are evaluated through two distinct pathways: first, quantization followed by filtering to assess both dequantization and enhancement; and second, filtering applied to original images before quantization as further investigation of mainly the dequantization effect. The results are presented both qualitatively, with visual examples, and quantitatively, through metrics including the number of colors, retinal-like subsampling contrast (RSC), and structural similarity index (SSIM).
2024
Istituto per le applicazioni del calcolo - IAC - Sede Secondaria Napoli
Color, Quantization, Dequantization, Image enhancement, HVS computational model, Spatial vision
File in questo prodotto:
File Dimensione Formato  
2024_JOSAA-compresso.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 599.21 kB
Formato Adobe PDF
599.21 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/525682
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact