On the half line, we introduce a new sequence of near-best uniform approximation polynomials, easily computable by the values of the approximated function at a truncated number of Laguerre zeros. Such approximation polynomials come from a discretization of filtered Fourier–Laguerre partial sums, which are filtered using a de la Vallée Poussin (VP) filter. They have the peculiarity of depending on two parameters: a truncation parameter that determines how many of the n Laguerre zeros are considered, and a localization parameter, which determines the range of action of the VP filter we will apply. As n→∞, under simple assumptions on such parameters and the Laguerre exponents of the involved weights, we prove that the new VP filtered approximation polynomials have uniformly bounded Lebesgue constants and uniformly convergence at a near–best approximation rate, for any locally continuous function on the semiaxis. The numerical experiments have validated the theoretical results. In particular, they show a better performance of the proposed VP filtered approximation versus the truncated Lagrange interpolation at the same nodes, especially for functions a.e. very smooth with isolated singularities. In such cases, we see a more localized approximation and a satisfactory reduction of the Gibbs phenomenon.

De la Vallée Poussin filtered polynomial approximation on the half–line

Themistoclakis W.
Co-primo
2025

Abstract

On the half line, we introduce a new sequence of near-best uniform approximation polynomials, easily computable by the values of the approximated function at a truncated number of Laguerre zeros. Such approximation polynomials come from a discretization of filtered Fourier–Laguerre partial sums, which are filtered using a de la Vallée Poussin (VP) filter. They have the peculiarity of depending on two parameters: a truncation parameter that determines how many of the n Laguerre zeros are considered, and a localization parameter, which determines the range of action of the VP filter we will apply. As n→∞, under simple assumptions on such parameters and the Laguerre exponents of the involved weights, we prove that the new VP filtered approximation polynomials have uniformly bounded Lebesgue constants and uniformly convergence at a near–best approximation rate, for any locally continuous function on the semiaxis. The numerical experiments have validated the theoretical results. In particular, they show a better performance of the proposed VP filtered approximation versus the truncated Lagrange interpolation at the same nodes, especially for functions a.e. very smooth with isolated singularities. In such cases, we see a more localized approximation and a satisfactory reduction of the Gibbs phenomenon.
2025
Istituto per le applicazioni del calcolo - IAC - Sede Secondaria Napoli
De la Vallée Poussin means
Filtered approximation
Laguerre polynomials
Polynomial approximation
File in questo prodotto:
File Dimensione Formato  
2025_ApNuM_VPsemiretta.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 773.8 kB
Formato Adobe PDF
773.8 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/526063
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact