In this paper the interpolating rational functions introduced by Floater and Hormann are generalized leading to a whole new family of rational functions depending on γ, an additional positive integer parameter. For γ=1, the original Floater–Hormann interpolants are obtained. When γ>1 we prove that the new rational functions share a lot of the nice properties of the original Floater–Hormann functions. Indeed, for any configuration of nodes in a compact interval, they have no real poles, interpolate the given data, preserve the polynomials up to a certain fixed degree, and have a barycentric-type representation. Moreover, we estimate the associated Lebesgue constants in terms of the minimum (h∗) and maximum (h) distance between two consecutive nodes. It turns out that, in contrast to the original Floater–Hormann interpolants, for all γ>1 we get uniformly bounded Lebesgue constants in the case of equidistant and quasi-equidistant nodes configurations (i.e., when h∼h∗). For such configurations, as the number of nodes tends to infinity, we prove that the new interpolants (γ>1) uniformly converge to the interpolated function f, for any continuous function f and all γ>1. The same is not ensured by the original FH interpolants (γ=1). Moreover, we provide uniform and pointwise estimates of the approximation error for functions having different degrees of smoothness. Numerical experiments illustrate the theoretical results and show a better error profile for less smooth functions compared to the original Floater–Hormann interpolants.

A generalization of Floater–Hormann interpolants

Themistoclakis W.
Co-primo
;
2024

Abstract

In this paper the interpolating rational functions introduced by Floater and Hormann are generalized leading to a whole new family of rational functions depending on γ, an additional positive integer parameter. For γ=1, the original Floater–Hormann interpolants are obtained. When γ>1 we prove that the new rational functions share a lot of the nice properties of the original Floater–Hormann functions. Indeed, for any configuration of nodes in a compact interval, they have no real poles, interpolate the given data, preserve the polynomials up to a certain fixed degree, and have a barycentric-type representation. Moreover, we estimate the associated Lebesgue constants in terms of the minimum (h∗) and maximum (h) distance between two consecutive nodes. It turns out that, in contrast to the original Floater–Hormann interpolants, for all γ>1 we get uniformly bounded Lebesgue constants in the case of equidistant and quasi-equidistant nodes configurations (i.e., when h∼h∗). For such configurations, as the number of nodes tends to infinity, we prove that the new interpolants (γ>1) uniformly converge to the interpolated function f, for any continuous function f and all γ>1. The same is not ensured by the original FH interpolants (γ=1). Moreover, we provide uniform and pointwise estimates of the approximation error for functions having different degrees of smoothness. Numerical experiments illustrate the theoretical results and show a better error profile for less smooth functions compared to the original Floater–Hormann interpolants.
2024
Istituto per le applicazioni del calcolo - IAC - Sede Secondaria Napoli
Blending function
Floater–Hormann interpolant
Rational approximation
File in questo prodotto:
File Dimensione Formato  
2024_JCAM_GeneralizedFH.pdf

solo utenti autorizzati

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.6 MB
Formato Adobe PDF
2.6 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/526101
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact