This contribution answers the question that Tom Lyche addressed to the public of the 2022-INDAM meeting in Cortona “Approximation Theory and Numerical Analysis meet Algebra, Geometry, Topology” while presenting his work with Carla Manni and Hendrik Speleers. The question is if the number of lines through any point in the Wang–Shi split of degree d is always less than or equal to d+1. The question is purely geometric, but it has application to the construction of piecewise polynomial spaces with maximal order of continuity on general triangulations by splitting each triangle in sub-polygons.

A Bound on the Number of Lines Through a Point in the Wang–Shi Split

Bressan A.;
2024

Abstract

This contribution answers the question that Tom Lyche addressed to the public of the 2022-INDAM meeting in Cortona “Approximation Theory and Numerical Analysis meet Algebra, Geometry, Topology” while presenting his work with Carla Manni and Hendrik Speleers. The question is if the number of lines through any point in the Wang–Shi split of degree d is always less than or equal to d+1. The question is purely geometric, but it has application to the construction of piecewise polynomial spaces with maximal order of continuity on general triangulations by splitting each triangle in sub-polygons.
2024
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
9789819765072
9789819765089
Wang-Shi split, spline, dimension formula, line intersection
File in questo prodotto:
File Dimensione Formato  
rep23-29.pdf

embargo fino al 23/12/2025

Descrizione: From RICAM
Tipologia: Documento in Post-print
Licenza: Altro tipo di licenza
Dimensione 634.79 kB
Formato Adobe PDF
634.79 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pagine da 978-981-97-6508-9.pdf

solo utenti autorizzati

Descrizione: A Bound on the Number of Lines Through a Point in theWang–Shi Split
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 242.86 kB
Formato Adobe PDF
242.86 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/526216
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact