: Astrocytes from different brain regions respond with Ca2+ elevations to the catecholamine norepinephrine (NE). However, whether this noradrenergic-mediated signaling is present in astrocytes from the ventral tegmental area (VTA), a dopaminergic circuit receiving noradrenergic inputs, has not yet been investigated. To fill in this gap, we applied a pharmacological approach along with two-photon microscopy and an AAV strategy to express a genetically encoded calcium indicator in VTA astrocytes. We found that VTA astrocytes from both female and male young adult mice showed a strong Ca2+ response to NE at both soma and processes. Our results revealed that Gq-coupled α1 adrenergic receptors, which elicit the production of IP3, are the main mediators of the astrocyte response. In mice lacking the IP3 receptor type-2 (IP3R2-/- mice), we found that the astrocyte response to NE, even if reduced, is still present. We also found that in IP3R2-/- astrocytes, the residual Ca2+ elevations elicited by NE depend on the release of Ca2+ from the endoplasmic reticulum, through IP3Rs different from IP3R2. In conclusion, our results reveal VTA astrocytes as novel targets of the noradrenergic signaling, opening to new interpretations of the cellular and molecular mechanisms that mediate the NE effects in the VTA.

Characterization of the Astrocyte Calcium Response to Norepinephrine in the Ventral Tegmental Area

Micaela Zonta
Penultimo
;
Marta Gomez-Gonzalo
Ultimo
2024

Abstract

: Astrocytes from different brain regions respond with Ca2+ elevations to the catecholamine norepinephrine (NE). However, whether this noradrenergic-mediated signaling is present in astrocytes from the ventral tegmental area (VTA), a dopaminergic circuit receiving noradrenergic inputs, has not yet been investigated. To fill in this gap, we applied a pharmacological approach along with two-photon microscopy and an AAV strategy to express a genetically encoded calcium indicator in VTA astrocytes. We found that VTA astrocytes from both female and male young adult mice showed a strong Ca2+ response to NE at both soma and processes. Our results revealed that Gq-coupled α1 adrenergic receptors, which elicit the production of IP3, are the main mediators of the astrocyte response. In mice lacking the IP3 receptor type-2 (IP3R2-/- mice), we found that the astrocyte response to NE, even if reduced, is still present. We also found that in IP3R2-/- astrocytes, the residual Ca2+ elevations elicited by NE depend on the release of Ca2+ from the endoplasmic reticulum, through IP3Rs different from IP3R2. In conclusion, our results reveal VTA astrocytes as novel targets of the noradrenergic signaling, opening to new interpretations of the cellular and molecular mechanisms that mediate the NE effects in the VTA.
2024
Istituto di Neuroscienze - IN - Sede Secondaria Padova
IP3 receptor
astrocyte
calcium
norepinephrine
ventral tegmental area
File in questo prodotto:
File Dimensione Formato  
cells-14-00024.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 7.01 MB
Formato Adobe PDF
7.01 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/526464
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact