Information fusion via multimodal inverse problems and different sensors is addressed using a Fisher information analysis approach. The Fisher information measure is inherently additive, and it facilitates an appropriate weighting of the measurement data that is statistically optimal and can hence be useful with reconstruction algorithms in geophysical sensing. Given that there exists proper knowledge about the sensor noise statistics, correlations and spectral contents, as well as a correct forward model, the Fisher information is a natural measure of information because it is closely linked to the statistical maximum likelihood principle. To illustrate the concept of data correlation based on statistical Fisher information analysis, two simple and generic examples are employed in electrical resistivity and electromagnetic tomography, which are motivated by geophysical applications, such as tunnel detection. The examples demonstrate that a properly weighted data fusion can be of crucial importance for an ill-posed multimodal inverse problem. © 2011 Nanjing Geophysical Research Institute.

Data fusion for reconstruction algorithms via different sensors in geophysical sensing

2011

Abstract

Information fusion via multimodal inverse problems and different sensors is addressed using a Fisher information analysis approach. The Fisher information measure is inherently additive, and it facilitates an appropriate weighting of the measurement data that is statistically optimal and can hence be useful with reconstruction algorithms in geophysical sensing. Given that there exists proper knowledge about the sensor noise statistics, correlations and spectral contents, as well as a correct forward model, the Fisher information is a natural measure of information because it is closely linked to the statistical maximum likelihood principle. To illustrate the concept of data correlation based on statistical Fisher information analysis, two simple and generic examples are employed in electrical resistivity and electromagnetic tomography, which are motivated by geophysical applications, such as tunnel detection. The examples demonstrate that a properly weighted data fusion can be of crucial importance for an ill-posed multimodal inverse problem. © 2011 Nanjing Geophysical Research Institute.
2011
Istituto per il Rilevamento Elettromagnetico dell'Ambiente - IREA
Data fusion
electrical impedance tomography
Fisher information
inverse problems
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/52650
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact