Chiral hybrid organic-inorganic metal halides are highly promising chiroptoelectronic materials with potential applications in several fields, such as circularly polarized photodetectors, second-order nonlinear optics, and spin-selective devices. However, the ability of manipulating the chiroptical response and the chirality transfer from the organic ligands require one to shed light on structure-property correlations. Herein, we devised and prepared two novel Ge-based chiral hybrid organic-inorganic metal halides showing a different structural topology, namely, a 1D and a 2D arrangement, but composed of the same chemical building blocks: (R/S-ClMBA)(3)GeI5 and (R/S-ClMBA)(2)GeI4. Through a combined experimental and computational investigation on these samples, we discuss the impact of structural dimensionality on chiroptical properties, chirality transfer, and spin-splitting effects; also, we highlight the impact of structural distortions. The approach presented here paves the way for a solid understanding of the factors affecting the properties of chiral metal halides, thus allowing a future wise materials engineering.
Unraveling the Role of Structural Topology on Chirality Transfer and Chiroptical Properties in Chiral Germanium Iodides
Alessandro Stroppa;Lorenzo Malavasi
2024
Abstract
Chiral hybrid organic-inorganic metal halides are highly promising chiroptoelectronic materials with potential applications in several fields, such as circularly polarized photodetectors, second-order nonlinear optics, and spin-selective devices. However, the ability of manipulating the chiroptical response and the chirality transfer from the organic ligands require one to shed light on structure-property correlations. Herein, we devised and prepared two novel Ge-based chiral hybrid organic-inorganic metal halides showing a different structural topology, namely, a 1D and a 2D arrangement, but composed of the same chemical building blocks: (R/S-ClMBA)(3)GeI5 and (R/S-ClMBA)(2)GeI4. Through a combined experimental and computational investigation on these samples, we discuss the impact of structural dimensionality on chiroptical properties, chirality transfer, and spin-splitting effects; also, we highlight the impact of structural distortions. The approach presented here paves the way for a solid understanding of the factors affecting the properties of chiral metal halides, thus allowing a future wise materials engineering.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.