In contrast to software simulations of neural networks, hardware implementations have limited or no tunability. While such networks promise great improvements in terms of speed and energy efficiency, their performance is limited by the difficulty of applying efficient training. We propose and realize experimentally an optical system where highly efficient backpropagation training can be applied through an array of highly nonlinear, nontunable nodes. The system includes exciton-polariton nodes realizing nonlinear activation functions. We demonstrate high classification accuracy in the MNIST handwritten digit benchmark in a single-hidden-layer system.

Training a Neural Network with Exciton-Polariton Optical Nonlinearity

Panico, R.;Ardizzone, V.;Sanvitto, D.;Ballarini, D.
2022

Abstract

In contrast to software simulations of neural networks, hardware implementations have limited or no tunability. While such networks promise great improvements in terms of speed and energy efficiency, their performance is limited by the difficulty of applying efficient training. We propose and realize experimentally an optical system where highly efficient backpropagation training can be applied through an array of highly nonlinear, nontunable nodes. The system includes exciton-polariton nodes realizing nonlinear activation functions. We demonstrate high classification accuracy in the MNIST handwritten digit benchmark in a single-hidden-layer system.
2022
Istituto di Nanotecnologia - NANOTEC - Sede Lecce
exciton-polariton, neuromorphic computing
File in questo prodotto:
File Dimensione Formato  
2107.11156v2.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Altro tipo di licenza
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF Visualizza/Apri
PhysRevApplied.18.024028.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.17 MB
Formato Adobe PDF
4.17 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/526771
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact