Hyperpolarized13 C magnetic resonance (MR) is a promising technique for the noninvasive assessment of the regional cardiac metabolism since it permits heart physiology studies in pig and mouse models. The main objective of the present study is to resume the work carried out at our electromagnetic laboratory in the field of radio frequency (RF) coil design, building, and testing. In this paper, first, we review the principles of RF coils, coil performance parameters, and estimation methods by using simulations, workbench, and MR imaging experiments. Then, we describe the simulation, design, and testing of different13 C coil configurations and acquisition settings for hyperpolarized studies on pig and mouse heart with a clinical 3T MRI scanner. The coil simulation is performed by developing a signal-to-noise ratio (SNR) model in terms of coil resistance, sample-induced resistance, and magnetic field pattern. Coil resistance was calculated from Ohm’s law and sample-induced resistances were estimated with a finite-difference time-domain (FDTD) algorithm. In contrast, the magnetic field per unit current was calculated by magnetostatic theory and a FDTD algorithm. The information could be of interest to graduate students and researchers working on the design and development of an MR coil to be used in13 C studies.

Radio Frequency Coils for Hyperpolarized 13 C Magnetic Resonance Experiments with a 3T MR Clinical Scanner: Experience from a Cardiovascular Lab

Giovannetti G.;Santarelli M. F.;Menichetti L.;
2021

Abstract

Hyperpolarized13 C magnetic resonance (MR) is a promising technique for the noninvasive assessment of the regional cardiac metabolism since it permits heart physiology studies in pig and mouse models. The main objective of the present study is to resume the work carried out at our electromagnetic laboratory in the field of radio frequency (RF) coil design, building, and testing. In this paper, first, we review the principles of RF coils, coil performance parameters, and estimation methods by using simulations, workbench, and MR imaging experiments. Then, we describe the simulation, design, and testing of different13 C coil configurations and acquisition settings for hyperpolarized studies on pig and mouse heart with a clinical 3T MRI scanner. The coil simulation is performed by developing a signal-to-noise ratio (SNR) model in terms of coil resistance, sample-induced resistance, and magnetic field pattern. Coil resistance was calculated from Ohm’s law and sample-induced resistances were estimated with a finite-difference time-domain (FDTD) algorithm. In contrast, the magnetic field per unit current was calculated by magnetostatic theory and a FDTD algorithm. The information could be of interest to graduate students and researchers working on the design and development of an MR coil to be used in13 C studies.
2021
Istituto di Fisiologia Clinica - IFC
Magnetic resonance
Radio frequency coils
Simulation
File in questo prodotto:
File Dimensione Formato  
Giovannetti_Electronics 2021.pdf

accesso aperto

Descrizione: Radio Frequency Coils for Hyperpolarized 13C Magnetic Resonance Experiments with a 3T MR Clinical Scanner: Experience from a Cardiovascular Lab
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.63 MB
Formato Adobe PDF
3.63 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/526797
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact