We investigate minimal-perimeter configurations of two finite sets of points on the square lattice. This corresponds to a lattice version of the classical double-bubble problem. We give a detailed description of the fine geometry of minimisers and, in some parameter regime, we compute the optimal perimeter as a function of the size of the point sets. Moreover, we provide a sharp bound on the difference between two minimisers, which are generally not unique, and use it to rigorously identify their Wulff shape, as the size of the point sets scales up.

The double-bubble problem on the square lattice

ULISSE STEFANELLI
2024

Abstract

We investigate minimal-perimeter configurations of two finite sets of points on the square lattice. This corresponds to a lattice version of the classical double-bubble problem. We give a detailed description of the fine geometry of minimisers and, in some parameter regime, we compute the optimal perimeter as a function of the size of the point sets. Moreover, we provide a sharp bound on the difference between two minimisers, which are generally not unique, and use it to rigorously identify their Wulff shape, as the size of the point sets scales up.
2024
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Double bubble, square lattice, optimal point configuration, Wulff shape
File in questo prodotto:
File Dimensione Formato  
10.4171-ifb-510.pdf

accesso aperto

Descrizione: THE DOUBLE-BUBBLE PROBLEM ON THE SQUARE LATTICE
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 530.68 kB
Formato Adobe PDF
530.68 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/527083
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact