THz radiation has gained great importance due to its potential applications in a wide variety of fields. For this reason, continuous efforts have been made to develop technological tools for use in this versatile band of the electromagnetic spectrum. Here, we propose a reflecting device with long focusing performances in the sub-THz band, using a bimirror device in which the relative angle is mechanically adjusted with the displacement of one of the mirrors. Despite the simplicity of the setup, the performance of this device is satisfactory down to a frequency of 0.1 THz. Theory and experience confirm that the bimirror is capable of focusing 0.1 THz radiation with a 2× magnification of the maximum input intensity while maintaining a longitudinal full width at half maximum (FWHM) of about 6 mm, which is about 12 times the depth of focus of a cylindrical optical element of the same focal length. In the absence of suitable THz equipment, the invariance property of the Fresnel diffraction integral allowed the predicted behavior to be tested in the THz range using conventional equipment operating at visible frequencies.

Tunable Device for Long Focusing in the Sub-THz Frequency Range Based on Fresnel Mirrors

Margheri, Giancarlo;
2024

Abstract

THz radiation has gained great importance due to its potential applications in a wide variety of fields. For this reason, continuous efforts have been made to develop technological tools for use in this versatile band of the electromagnetic spectrum. Here, we propose a reflecting device with long focusing performances in the sub-THz band, using a bimirror device in which the relative angle is mechanically adjusted with the displacement of one of the mirrors. Despite the simplicity of the setup, the performance of this device is satisfactory down to a frequency of 0.1 THz. Theory and experience confirm that the bimirror is capable of focusing 0.1 THz radiation with a 2× magnification of the maximum input intensity while maintaining a longitudinal full width at half maximum (FWHM) of about 6 mm, which is about 12 times the depth of focus of a cylindrical optical element of the same focal length. In the absence of suitable THz equipment, the invariance property of the Fresnel diffraction integral allowed the predicted behavior to be tested in the THz range using conventional equipment operating at visible frequencies.
2024
Istituto dei Sistemi Complessi - ISC
THz devices
beam shaping
long-focus devices
File in questo prodotto:
File Dimensione Formato  
micromachines-15-00715.pdf

accesso aperto

Descrizione: Tunable Device for Long Focusing in the Sub-THz Frequency Range Based on Fresnel Mirrors
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.77 MB
Formato Adobe PDF
4.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/527162
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact