Van-der-Waals assembly enables the fabrication of novel Josephson junctions featuring an atomically sharp interface between two exfoliated and relatively twisted Bi2Sr2CaCu2O8+x (Bi2212) flakes. In a range of twist angles around 45°, the junction provides a regime where the interlayer two-Cooper pair tunneling dominates the current-phase relation. Here we propose employing this novel junction to realize a capacitively shunted qubit that we call flowermon. The d-wave nature of the order parameter endows the flowermon with inherent protection against charge-noise-induced relaxation and quasiparticle-induced dissipation. This inherently protected qubit paves the way to a new class of high-coherence hybrid superconducting quantum devices based on unconventional superconductors.

Superconducting Qubit Based on Twisted Cuprate Van der Waals Heterostructures

Brosco, Valentina;Poccia, Nicola;
2024

Abstract

Van-der-Waals assembly enables the fabrication of novel Josephson junctions featuring an atomically sharp interface between two exfoliated and relatively twisted Bi2Sr2CaCu2O8+x (Bi2212) flakes. In a range of twist angles around 45°, the junction provides a regime where the interlayer two-Cooper pair tunneling dominates the current-phase relation. Here we propose employing this novel junction to realize a capacitively shunted qubit that we call flowermon. The d-wave nature of the order parameter endows the flowermon with inherent protection against charge-noise-induced relaxation and quasiparticle-induced dissipation. This inherently protected qubit paves the way to a new class of high-coherence hybrid superconducting quantum devices based on unconventional superconductors.
2024
Istituto dei Sistemi Complessi - ISC
--
File in questo prodotto:
File Dimensione Formato  
PhysRevLett.132.017003.pdf

solo utenti autorizzati

Descrizione: Superconducting Qubit Based on Twisted Cuprate Van der Waals Heterostructures
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/527363
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact