High-resolution water vapor fields retrieved over Iberia during the passage of storm Barbara (October 19–20, 2020) by Sentinel-1 and assimilated by the Weanther Research & Forecasting Model (WRF) reveal a substantial positive impact on water vapor forecasting. Due to the path followed by the storm across Iberia, from its southwestern to the northeastern corners, and the geometry of Sentinel-1 data acquisition, it is possible to show, for the first time, the potential added value of precipitable water vapor (PWV) obtained by the Interferometric Synthetic-Aperture Radar (InSAR) technique, as a data source for both the forecast and validation of meteorological forecasts of synoptic-scale storms. Results indicate that data assimilated in the InSARfootprint positively impact the downstream forecasts up to the northeastern boundary, about 850km and 12 hours away, with improved skill scores of the water vapor distribution and improved forecasts of rain.

Precipitable water vapor from Sentinel-1 improves the forecast of extratropical storm Barbara

Nico G.;
2024

Abstract

High-resolution water vapor fields retrieved over Iberia during the passage of storm Barbara (October 19–20, 2020) by Sentinel-1 and assimilated by the Weanther Research & Forecasting Model (WRF) reveal a substantial positive impact on water vapor forecasting. Due to the path followed by the storm across Iberia, from its southwestern to the northeastern corners, and the geometry of Sentinel-1 data acquisition, it is possible to show, for the first time, the potential added value of precipitable water vapor (PWV) obtained by the Interferometric Synthetic-Aperture Radar (InSAR) technique, as a data source for both the forecast and validation of meteorological forecasts of synoptic-scale storms. Results indicate that data assimilated in the InSARfootprint positively impact the downstream forecasts up to the northeastern boundary, about 850km and 12 hours away, with improved skill scores of the water vapor distribution and improved forecasts of rain.
2024
Istituto per le applicazioni del calcolo - IAC - Sede Secondaria Bari
data assimilation (DA)
Interferometric Synthetic-Aperture Radar (InSAR),
numerical weather prediction (NWP)
three-dimensional Variational Data Assimilation (3DVAR)
water vapor
File in questo prodotto:
File Dimensione Formato  
Quart J Royal Meteoro Soc - 2024 - Mateus - Precipitable water vapor from Sentinel‐1 improves the forecast of extratropical_compressed.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.02 MB
Formato Adobe PDF
3.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/527421
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact