The single–diode model is widely used for the analysis of photovoltaic systems and reproducing accurately the I–V curve. Numerical or analytical methods can be employed to estimate the model parameters; among them explicit methods are well assessed providing precise results and low computational complexity, thus suitable to be developed on embedded systems. Due to their approximated nature, the accuracy of such methods may be affected by the operating conditions and by the state of health of the photovoltaic modules that have been characterised. The main contribution of this paper is to analyse a selection of explicit methods with the aim of testing their capability to detect degradation in photovoltaic modules. Since different degradation phenomena are reflected in a variation of the series resistance of the single diode equivalent circuit, the study is mainly focused on the estimation of this parameter. The comparison of different explicit methods has been done by using outdoor experimental I–V curves of a photovoltaic module operating in normal as well as degraded conditions. The analysis shows that only few methods exhibit enough reliability to estimate correctly the model parameters in presence of degradation and are less sensible to the environmental operating conditions.

Parameters extraction of single diode model for degraded photovoltaic modules

Piliougine M.;
2021

Abstract

The single–diode model is widely used for the analysis of photovoltaic systems and reproducing accurately the I–V curve. Numerical or analytical methods can be employed to estimate the model parameters; among them explicit methods are well assessed providing precise results and low computational complexity, thus suitable to be developed on embedded systems. Due to their approximated nature, the accuracy of such methods may be affected by the operating conditions and by the state of health of the photovoltaic modules that have been characterised. The main contribution of this paper is to analyse a selection of explicit methods with the aim of testing their capability to detect degradation in photovoltaic modules. Since different degradation phenomena are reflected in a variation of the series resistance of the single diode equivalent circuit, the study is mainly focused on the estimation of this parameter. The comparison of different explicit methods has been done by using outdoor experimental I–V curves of a photovoltaic module operating in normal as well as degraded conditions. The analysis shows that only few methods exhibit enough reliability to estimate correctly the model parameters in presence of degradation and are less sensible to the environmental operating conditions.
2021
Istituto per la Microelettronica e Microsistemi - IMM
Photovoltaic diagnosis
Photovoltaic module simulation
Single diode model parameters identification
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0960148120314555-main.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.55 MB
Formato Adobe PDF
2.55 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1-s2.0-S0960148120314555-main_GOA.pdf

Open Access dal 02/02/2023

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.82 MB
Formato Adobe PDF
1.82 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/527761
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 52
social impact