In this work, we designed a tetranuclear self-assembled dye 4 (2Z907-Ag+-(Ru(TMAM))) exploiting a combination of the antenna effect and positively-charged groups designed to repel the oxidized form of cationic cobalt redox mediators, in order to reduce recombination and increase the efficiency of dye sensitized solar cells (DSSCs). Charge transfer and excited dynamics were probed by photoelectrochemical and photophysical measurements. The sensitized cell performance, recorded with a [Co(bpy)3]3+/2+ redox mediator and PEDOT counter electrode, showed an improvement when passing from Z907 to the multinuclear systems. The enhancement of the efficiency compared to Z907 resulted mainly from a superior steric and electrostatic shielding determined by the simultaneous presence of long alkyl chains and quaternary ammonia ion units in the architecture of 4.

Self-Assembled Multinuclear Complexes for Cobalt(II/III) Mediated Sensitized Solar Cells

Cristino, Vito;Argazzi, Roberto;
2021

Abstract

In this work, we designed a tetranuclear self-assembled dye 4 (2Z907-Ag+-(Ru(TMAM))) exploiting a combination of the antenna effect and positively-charged groups designed to repel the oxidized form of cationic cobalt redox mediators, in order to reduce recombination and increase the efficiency of dye sensitized solar cells (DSSCs). Charge transfer and excited dynamics were probed by photoelectrochemical and photophysical measurements. The sensitized cell performance, recorded with a [Co(bpy)3]3+/2+ redox mediator and PEDOT counter electrode, showed an improvement when passing from Z907 to the multinuclear systems. The enhancement of the efficiency compared to Z907 resulted mainly from a superior steric and electrostatic shielding determined by the simultaneous presence of long alkyl chains and quaternary ammonia ion units in the architecture of 4.
2021
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF - Sede Secondaria Ferrara
Antenna effects
DSSC
N-type sensitization
Repulsion
Shielding
Silver ions
File in questo prodotto:
File Dimensione Formato  
applsci-11-02769.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.24 MB
Formato Adobe PDF
3.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/528171
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact