Variational hybrid quantum-classical optimization is one of the most promising avenues to show the advantages of noisy intermediate-scale quantum computers in solving hard problems, such as finding the minimum-energy state of a Hamiltonian or solving some machine-learning tasks. In these devices, noise is unavoidable and impossible to error correct, yet its role in the optimization process is not well understood, especially from the theoretical viewpoint. Here we consider a minimization problem with respect to a variational state, iteratively obtained via a parametric quantum circuit, taking into account both the role of noise and the stochastic nature of quantum measurement outcomes. We show that the accuracy of the result obtained for a fixed number of iterations is bounded by a quantity related to the quantum Fisher information of the variational state. Using this bound, we study the convergence property of the quantum approximate optimization algorithm under realistic noise models, showing the robustness of the algorithm against different noise strengths.

Noise-resilient variational hybrid quantum-classical optimization

Verrucchi, Paola;
2020

Abstract

Variational hybrid quantum-classical optimization is one of the most promising avenues to show the advantages of noisy intermediate-scale quantum computers in solving hard problems, such as finding the minimum-energy state of a Hamiltonian or solving some machine-learning tasks. In these devices, noise is unavoidable and impossible to error correct, yet its role in the optimization process is not well understood, especially from the theoretical viewpoint. Here we consider a minimization problem with respect to a variational state, iteratively obtained via a parametric quantum circuit, taking into account both the role of noise and the stochastic nature of quantum measurement outcomes. We show that the accuracy of the result obtained for a fixed number of iterations is bounded by a quantity related to the quantum Fisher information of the variational state. Using this bound, we study the convergence property of the quantum approximate optimization algorithm under realistic noise models, showing the robustness of the algorithm against different noise strengths.
2020
Istituto dei Sistemi Complessi - ISC
-
File in questo prodotto:
File Dimensione Formato  
PhysRevA.102.052414.pdf

solo utenti autorizzati

Descrizione: Noise-resilient variational hybrid quantum-classical optimization
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.96 MB
Formato Adobe PDF
1.96 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/528184
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 30
social impact