Operated by the H2020 SOMA Project, the recently established Social Observatory for Disinformation and Social Media Analysis supports researchers, journalists and fact-checkers in their quest for quality information. At the core of the Observatory lies the DisInfoNet Toolbox, designed to help a wide spectrum of users understand the dynamics of (fake) news dissemination in social networks. DisInfoNet combines text mining and classification with graph analysis and visualization to offer a comprehensive and user-friendly suite. To demonstrate the potential of our Toolbox, we consider a Twitter dataset of more than 1.3M tweets focused on the Italian 2016 constitutional referendum and use DisInfoNet to: (i) track relevant news stories and reconstruct their prevalence over time and space; (ii) detect central debating communities and capture their distinctive polarization/narrative; (iii) identify influencers both globally and in specific “disinformation networks”.
Beyond Fact-Checking: Network Analysis Tools for Monitoring Disinformation in Social Media
Guarino S.
Primo
;
2020
Abstract
Operated by the H2020 SOMA Project, the recently established Social Observatory for Disinformation and Social Media Analysis supports researchers, journalists and fact-checkers in their quest for quality information. At the core of the Observatory lies the DisInfoNet Toolbox, designed to help a wide spectrum of users understand the dynamics of (fake) news dissemination in social networks. DisInfoNet combines text mining and classification with graph analysis and visualization to offer a comprehensive and user-friendly suite. To demonstrate the potential of our Toolbox, we consider a Twitter dataset of more than 1.3M tweets focused on the Italian 2016 constitutional referendum and use DisInfoNet to: (i) track relevant news stories and reconstruct their prevalence over time and space; (ii) detect central debating communities and capture their distinctive polarization/narrative; (iii) identify influencers both globally and in specific “disinformation networks”.File | Dimensione | Formato | |
---|---|---|---|
Beyond_Fact_Checking_Network_Analysis_To.pdf
solo utenti autorizzati
Tipologia:
Documento in Pre-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.47 MB
Formato
Adobe PDF
|
2.47 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.