We investigate the problem of source separation in images in the Bayesian framework using the color channel dependencies. As a case in point we consider the source separation of color images which have dependence between its components. A Markov Random Field (MRF) is used for modeling of the inter and intra-source local correlations. We resort to Gibbs sampling algorithm for obtaining the MAP estimate of the sources since non-Gaussian priors are adopted. We test the performance of the proposed method both on synthetic color texture mixtures and a realistic color scene captured with a spurious reflection.
Image source separation using color channel dependencies
Kuruoglu E E;
2009
Abstract
We investigate the problem of source separation in images in the Bayesian framework using the color channel dependencies. As a case in point we consider the source separation of color images which have dependence between its components. A Markov Random Field (MRF) is used for modeling of the inter and intra-source local correlations. We resort to Gibbs sampling algorithm for obtaining the MAP estimate of the sources since non-Gaussian priors are adopted. We test the performance of the proposed method both on synthetic color texture mixtures and a realistic color scene captured with a spurious reflection.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
prod_44286-doc_130756.pdf
solo utenti autorizzati
Descrizione: Image source separation using color channel dependencies
Tipologia:
Versione Editoriale (PDF)
Dimensione
273.47 kB
Formato
Adobe PDF
|
273.47 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.