Cyclometalated iridium complexes, emitters of choice in organic light-emitting diodes (OLEDs), hold great potential for near-infrared (NIR) applications. Upon increasing the conjugation size and chemical complexity of the ligands, as required to push the emission toward the NIR), overall high-molecular-weight complexes (both homoleptic and heteroleptic β-diketonate ones) are obtained, posing related issues in OLED processing. One, so far barely explored, question arises: "Why endow Ir(III) with three or two emissive ligands when one might work just as well?"Herein, as proof of concept for OLED technology, we disclose three novel deep-red to NIR emitters of formula Ir(C^N)2(iqbt), with a single iqbt (1-(benzo[b]thiophen-2-yl)-isoquinolinate) ligand responsible for the emission in the NIR range. (C^N) are cyclometalated ligands with higher triplet energy than that of iqbt. We demonstrate that the presence of a single iqbt ligand is sufficient to enable efficient phosphorescence matching that of homoleptic Ir(iqbt)3; moreover, the Ir(C^N)2(iqbt) based OLEDs display efficiency exceeding the one of Ir(iqbt)3. These compounds offer several important benefits: (i) advantageous synthetic protocols limiting to the last step of the use of novel and synthetic costly NIR ligands (implying a lower amount of ligand required), (ii) commercially available (C^N) to prepare the starting Ir chloro-dimers, and (iii) lower molecular weight of the complexes compared to that of the homoleptic parent ones fruitful for easier vacuum thermal processing of the emitters.

Advancing Near-Infrared Phosphorescence with Heteroleptic Iridium Complexes Bearing a Single Emitting Ligand: Properties and Organic Light-Emitting Diode Applications

Penconi, Marta
Primo
;
Cazzaniga, Marco;Baldoli, Clara;Ceresoli, Davide;Bossi, Alberto
Ultimo
2022

Abstract

Cyclometalated iridium complexes, emitters of choice in organic light-emitting diodes (OLEDs), hold great potential for near-infrared (NIR) applications. Upon increasing the conjugation size and chemical complexity of the ligands, as required to push the emission toward the NIR), overall high-molecular-weight complexes (both homoleptic and heteroleptic β-diketonate ones) are obtained, posing related issues in OLED processing. One, so far barely explored, question arises: "Why endow Ir(III) with three or two emissive ligands when one might work just as well?"Herein, as proof of concept for OLED technology, we disclose three novel deep-red to NIR emitters of formula Ir(C^N)2(iqbt), with a single iqbt (1-(benzo[b]thiophen-2-yl)-isoquinolinate) ligand responsible for the emission in the NIR range. (C^N) are cyclometalated ligands with higher triplet energy than that of iqbt. We demonstrate that the presence of a single iqbt ligand is sufficient to enable efficient phosphorescence matching that of homoleptic Ir(iqbt)3; moreover, the Ir(C^N)2(iqbt) based OLEDs display efficiency exceeding the one of Ir(iqbt)3. These compounds offer several important benefits: (i) advantageous synthetic protocols limiting to the last step of the use of novel and synthetic costly NIR ligands (implying a lower amount of ligand required), (ii) commercially available (C^N) to prepare the starting Ir chloro-dimers, and (iii) lower molecular weight of the complexes compared to that of the homoleptic parent ones fruitful for easier vacuum thermal processing of the emitters.
2022
Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC
Infrared devices; Iridium compounds; Organic light emitting diodes (OLED); Phosphorescence; NIR OLED
File in questo prodotto:
File Dimensione Formato  
penconi-et-al-2022-advancing-near-infrared-phosphorescence-with-heteroleptic-iridium-complexes-bearing-a-single.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.04 MB
Formato Adobe PDF
3.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
cm-2021-01800x_Proof_hi.pdf

Open Access dal 05/01/2023

Descrizione: Proofs Accepted
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 560.94 kB
Formato Adobe PDF
560.94 kB Adobe PDF Visualizza/Apri
chemMater_2022_ 1c03030_si_001.pdf

accesso aperto

Descrizione: Supp Information
Tipologia: Altro materiale allegato
Licenza: Altro tipo di licenza
Dimensione 2.8 MB
Formato Adobe PDF
2.8 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/528501
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 29
social impact