We adopt two priors to realize reflection separation from a single image, namely spatial smoothness, which is based on pixels' color dependency, and structure difference, which is got from different source images (transmitted image and reflected image) and different color channels of the same image. By analysing the optical model of reflection, we simplify the mixing matrix further and realize the method for getting spatially varying mixing coefficients. Based on the priors and using Gibbs sampling and appropriate probability density with Bayesian framework, our approach can achieve impressive results for many real world images that corrupted with reflections.
Separating reflections from a single image using spatial smoothness and structure information
Kuruoglu E E;
2010
Abstract
We adopt two priors to realize reflection separation from a single image, namely spatial smoothness, which is based on pixels' color dependency, and structure difference, which is got from different source images (transmitted image and reflected image) and different color channels of the same image. By analysing the optical model of reflection, we simplify the mixing matrix further and realize the method for getting spatially varying mixing coefficients. Based on the priors and using Gibbs sampling and appropriate probability density with Bayesian framework, our approach can achieve impressive results for many real world images that corrupted with reflections.File | Dimensione | Formato | |
---|---|---|---|
prod_44354-doc_84565.pdf
solo utenti autorizzati
Descrizione: Separating reflections from a single image using spatial smoothness and structure information
Tipologia:
Versione Editoriale (PDF)
Dimensione
394.15 kB
Formato
Adobe PDF
|
394.15 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.