: In this work, we describe the development of targeted polymeric nanoparticles loaded with lenvatinib for the treatment of hepatocellular carcinoma (HCC). A synthetic brush copolymer (PHEA-g-BIB-pButMA-g-PEG-biotin) was synthesized from α-poly(N-2-hydroxyethyl)-D,L-aspartamide (PHEA) by a three-step reaction involving atom transfer radical polymerisation (ATRP) to graft hydrophobic polybutylmethacrylate pendant groups and further conjugation with biotinylated polyethylene glycol via carbonate ester. Subsequently, lenvatinib-loaded nanoparticles were obtained and characterized demonstrating colloidal size, negative zeta potential, biotin exposure on the surface and the ability to release lenvatinib in a sustained manner. Lenvatinib-loaded nanoparticles were tested in vitro on HCC cells to evaluate their anticancer efficacy compared to free drug. Furthermore, the enhanced in vivo efficacy of lenvatinib-loaded nanoparticles on nude mice HCC xenograft models was demonstrated by evaluating tumor burdens, apoptotic markers and histological scores after administration of lenvatinib-nanoparticles via intraperitoneal or oral route. Finally, in vivo biodistribution studies were performed, demonstrating the ability of the prepared drug delivery systems to significantly accumulate in the solid tumor by active targeting, due to the presence of biotin on the nanoparticle surface.

Biotinylated polyaminoacid-based nanoparticles for the targeted delivery of lenvatinib towards hepatocarcinoma

Conoci S.;Morganti D.;Fazio B.;
2024

Abstract

: In this work, we describe the development of targeted polymeric nanoparticles loaded with lenvatinib for the treatment of hepatocellular carcinoma (HCC). A synthetic brush copolymer (PHEA-g-BIB-pButMA-g-PEG-biotin) was synthesized from α-poly(N-2-hydroxyethyl)-D,L-aspartamide (PHEA) by a three-step reaction involving atom transfer radical polymerisation (ATRP) to graft hydrophobic polybutylmethacrylate pendant groups and further conjugation with biotinylated polyethylene glycol via carbonate ester. Subsequently, lenvatinib-loaded nanoparticles were obtained and characterized demonstrating colloidal size, negative zeta potential, biotin exposure on the surface and the ability to release lenvatinib in a sustained manner. Lenvatinib-loaded nanoparticles were tested in vitro on HCC cells to evaluate their anticancer efficacy compared to free drug. Furthermore, the enhanced in vivo efficacy of lenvatinib-loaded nanoparticles on nude mice HCC xenograft models was demonstrated by evaluating tumor burdens, apoptotic markers and histological scores after administration of lenvatinib-nanoparticles via intraperitoneal or oral route. Finally, in vivo biodistribution studies were performed, demonstrating the ability of the prepared drug delivery systems to significantly accumulate in the solid tumor by active targeting, due to the presence of biotin on the nanoparticle surface.
2024
Dipartimento di Scienze Fisiche e Tecnologie della Materia - DSFTM
Istituto per la Microelettronica e Microsistemi - IMM
Biotin targeting
Drug delivery
HCC
Lenvatinib
Nanoparticles
Polyaspartamide
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0378517324007713-main_compressed.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 884.71 kB
Formato Adobe PDF
884.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/529111
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact