Research on near-infrared- (NIR-) emitting materials and devices has been propelled by fundamental and practical application demands surrounding information-secured devices and night-vision displays to phototherapy and civilian medical diagnostics. However, the development of stable, highly efficient, low-cost NIR-emitting luminophores is still a formidable challenge owing to the vulnerability of the small emissive bandgap toward several nonradiative decay pathways, including the overlapping of ground- and excited-state vibrational energies and high-frequency oscillators. Suitable structural designs are mandatory for producing an intense NIR emission. Herein, we developed a series of deep-red to NIR emissive iridium(iii) complexes (Ir1-Ir4) to explore the effects of electron-donating and electron-withdrawing substituents anchored on the quinoline moiety of (benzo[b]thiophen-2-yl)quinoline cyclometalating ligands. These substituents help engineer the emission bandgap systematically from the deep-red to the NIR region while altering the emission efficiencies drastically. Single-crystal X-ray structures authenticated the exact coordination geometry and intermolecular interactions in these new compounds. We also performed an in-depth and comparative photophysical study in the solution, neat powder, doped polymer film, and freeze matrix at 77 K states to investigate the effects of substitution on the excited-state properties. These studies were conducted in conjunction with density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. Most importantly, the -CH3 substituted Ir1, unsubstituted Ir2, and -CF3 substituted complex (Ir4) were promising novel compounds with bright phosphorescence quantum efficiency in doped polymer films. Using these novel molecules, deep-red to NIR emissive organic light-emitting diodes (OLEDs) were fabricated using a solution-processable method. The unoptimized device exhibited maximum external quantum efficiency (EQE) values of 2.05% and 2.11% for Ir1 and Ir2, respectively.

Substituents engineered deep-red to near-infrared phosphorescence from tris-heteroleptic iridium(iii) complexes for solution processable red-NIR organic light-emitting diodes

BEJOY MOHAN DAS KOCHAN PANICKER SATHYASEELAN
Ultimo
Writing – Review & Editing
2018

Abstract

Research on near-infrared- (NIR-) emitting materials and devices has been propelled by fundamental and practical application demands surrounding information-secured devices and night-vision displays to phototherapy and civilian medical diagnostics. However, the development of stable, highly efficient, low-cost NIR-emitting luminophores is still a formidable challenge owing to the vulnerability of the small emissive bandgap toward several nonradiative decay pathways, including the overlapping of ground- and excited-state vibrational energies and high-frequency oscillators. Suitable structural designs are mandatory for producing an intense NIR emission. Herein, we developed a series of deep-red to NIR emissive iridium(iii) complexes (Ir1-Ir4) to explore the effects of electron-donating and electron-withdrawing substituents anchored on the quinoline moiety of (benzo[b]thiophen-2-yl)quinoline cyclometalating ligands. These substituents help engineer the emission bandgap systematically from the deep-red to the NIR region while altering the emission efficiencies drastically. Single-crystal X-ray structures authenticated the exact coordination geometry and intermolecular interactions in these new compounds. We also performed an in-depth and comparative photophysical study in the solution, neat powder, doped polymer film, and freeze matrix at 77 K states to investigate the effects of substitution on the excited-state properties. These studies were conducted in conjunction with density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. Most importantly, the -CH3 substituted Ir1, unsubstituted Ir2, and -CF3 substituted complex (Ir4) were promising novel compounds with bright phosphorescence quantum efficiency in doped polymer films. Using these novel molecules, deep-red to NIR emissive organic light-emitting diodes (OLEDs) were fabricated using a solution-processable method. The unoptimized device exhibited maximum external quantum efficiency (EQE) values of 2.05% and 2.11% for Ir1 and Ir2, respectively.
2018
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
NIR emission, OLED, deep red, phosphorescence, iridium complexes
File in questo prodotto:
File Dimensione Formato  
2018_Kim-2018-Substituents engineered deep-red to n.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 6.21 MB
Formato Adobe PDF
6.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/529136
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 59
social impact