Causality among events is widely recognized as a most fundamental structure of spacetime, and causal sets have been proposed as discrete models of the latter in the context of quantum gravity theories, notably in the Causal Set Programme. In the rather different context of what might be called the 'Computational Universe Programme' -- one which associates the complexity of physical phenomena to the emergent features of models such as cellular automata -- a choice problem arises with respect to the variety of formal systems that, in virtue of their computational universality (Turing-completeness), qualify as equally good candidates for a computational, unified theory of physics. We address this problem by proposing Causal Sets to be the only objects of physical significance under the computational universe perspective. At the same time, we propose a fully deterministic, radical alternative to the probabilistic techniques considered in the Causal Set Programme for growing discrete spacetime instances. We investigate a number of computation models, all operating on a one-dimensional support like a tape or a string of symbols, we identify the causality relation among their computation events, implement it, and conduct a possibly exhaustive exploration of the associated causal set space, while examining quantitative and qualitative features such as dimensionality, curvature, planarity, emergence of pseudo-randomness and particles.

Causal sets from simple models of computation

Bolognesi T
2010

Abstract

Causality among events is widely recognized as a most fundamental structure of spacetime, and causal sets have been proposed as discrete models of the latter in the context of quantum gravity theories, notably in the Causal Set Programme. In the rather different context of what might be called the 'Computational Universe Programme' -- one which associates the complexity of physical phenomena to the emergent features of models such as cellular automata -- a choice problem arises with respect to the variety of formal systems that, in virtue of their computational universality (Turing-completeness), qualify as equally good candidates for a computational, unified theory of physics. We address this problem by proposing Causal Sets to be the only objects of physical significance under the computational universe perspective. At the same time, we propose a fully deterministic, radical alternative to the probabilistic techniques considered in the Causal Set Programme for growing discrete spacetime instances. We investigate a number of computation models, all operating on a one-dimensional support like a tape or a string of symbols, we identify the causality relation among their computation events, implement it, and conduct a possibly exhaustive exploration of the associated causal set space, while examining quantitative and qualitative features such as dimensionality, curvature, planarity, emergence of pseudo-randomness and particles.
2010
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Models of computation
Causal set
Cellular automata
Discrete spacetime
Network mobile automata
File in questo prodotto:
File Dimensione Formato  
prod_44394-doc_37542.pdf

non disponibili

Descrizione: Causal sets from simple models of computation
Tipologia: Versione Editoriale (PDF)
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/52924
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact