This paper introduces a novel approach for loading and releasing Rhodamine B (RhB) into the skin using minimally-invasive microneedle technology developed through digital light-processing (DLP) printing. Notably, this process involves the direct 3D fabrication of rigid microneedle arrays affixed to a flexible patch, marking a pioneering application of DLP printing in this context. The stretchable and durable design of the microneedle substrate enables it to adapt to dynamic movements associated with human activities. Moreover, the microneedle features a pore on each side of the pyramid needle, effectively optimizing its drug-loading capabilities. Results indicate that the microneedle patch can withstand up to 50 % strain without failure and successfully penetrates rat skin. In vitro drug release profiles, conducted through artificial and rat skin, were observed over a 70 h period. This study establishes the potential of a simple manufacturing process for the creation of pore-designed microneedle arrays with a stretchable substrate, showcasing their viability in transdermal drug delivery applications.
Development of stretchable microneedle arrays via single-step digital light-processing printing for delivery of rhodamine B into skin tissue
Matteini, Paolo;
2024
Abstract
This paper introduces a novel approach for loading and releasing Rhodamine B (RhB) into the skin using minimally-invasive microneedle technology developed through digital light-processing (DLP) printing. Notably, this process involves the direct 3D fabrication of rigid microneedle arrays affixed to a flexible patch, marking a pioneering application of DLP printing in this context. The stretchable and durable design of the microneedle substrate enables it to adapt to dynamic movements associated with human activities. Moreover, the microneedle features a pore on each side of the pyramid needle, effectively optimizing its drug-loading capabilities. Results indicate that the microneedle patch can withstand up to 50 % strain without failure and successfully penetrates rat skin. In vitro drug release profiles, conducted through artificial and rat skin, were observed over a 70 h period. This study establishes the potential of a simple manufacturing process for the creation of pore-designed microneedle arrays with a stretchable substrate, showcasing their viability in transdermal drug delivery applications.File | Dimensione | Formato | |
---|---|---|---|
Development of stretchable microneedle arrays via single-step.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
6.19 MB
Formato
Adobe PDF
|
6.19 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Matteini_529463_ELSEVIER_OA_POSTPRINT.pdf
accesso aperto
Descrizione: This is the Author Accepted Manuscript (postprint) version of the following paper: Che Ab Rahman, Aqila, Matteini, Paolo, Kim, Se Hyun, Hwang, Byungil, Lim, Sooman, "Development of stretchable microneedle arrays via single-step digital light-processing printing for delivery of rhodamine B into skin tissue", in INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, vol. 262 no. Pt 2, 2024, https://dx.doi.org/10.1016/j.ijbiomac.2024.129987
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
1.11 MB
Formato
Adobe PDF
|
1.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.