Introducing heteroatoms into graphene is a powerful strategy to modulate its catalytic, electronic, and magnetic properties. At variance with the cases of nitrogen (N)- and boron (B)-doped graphene, a scalable method for incorporating transition metal atoms in the carbon (C) mesh is currently lacking, limiting the applicative interest of model system studies. This work presents a during-growth synthesis enabling the incorporation of cobalt (Co) alongside nickel (Ni) atoms in graphene on a Ni(111) substrate. Single atoms are covalently stabilized within graphene double vacancies, with a Co load ranging from 0.07 to 0.22% relative to C atoms, controllable by synthesis parameters. Structural characterization involves variable-temperature scanning tunneling microscopy and ab initio calculations. The Co- and Ni-codoped layer is transferred onto a transmission electron microscopy grid, confirming stability through scanning transmission electron microscopy and electron energy loss spectroscopy. This method holds promise for applications in spintronics, gas sensing, electrochemistry and catalysis, and potential extension to graphene incorporation of similar metals.

Scalable bottom-up synthesis of Co-Ni–doped graphene

Chesnyak, Valeria;Panighel, Mirco;Farooq, Ayesha;Stredansky, Matus;Cepek, Cinzia;Comelli, Giovanni;Africh, Cristina
2024

Abstract

Introducing heteroatoms into graphene is a powerful strategy to modulate its catalytic, electronic, and magnetic properties. At variance with the cases of nitrogen (N)- and boron (B)-doped graphene, a scalable method for incorporating transition metal atoms in the carbon (C) mesh is currently lacking, limiting the applicative interest of model system studies. This work presents a during-growth synthesis enabling the incorporation of cobalt (Co) alongside nickel (Ni) atoms in graphene on a Ni(111) substrate. Single atoms are covalently stabilized within graphene double vacancies, with a Co load ranging from 0.07 to 0.22% relative to C atoms, controllable by synthesis parameters. Structural characterization involves variable-temperature scanning tunneling microscopy and ab initio calculations. The Co- and Ni-codoped layer is transferred onto a transmission electron microscopy grid, confirming stability through scanning transmission electron microscopy and electron energy loss spectroscopy. This method holds promise for applications in spintronics, gas sensing, electrochemistry and catalysis, and potential extension to graphene incorporation of similar metals.
2024
Istituto Officina dei Materiali - IOM -
graphene, STM, photoemission, doping
File in questo prodotto:
File Dimensione Formato  
sciadv.ado8956.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.29 MB
Formato Adobe PDF
2.29 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/529701
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact