Data are represented as graphs in a wide range of applications, such as Computer Vision (e.g., images) and Graphics (e.g., 3D meshes), network analysis (e.g., social networks), and bio-informatics (e.g., molecules). In this context, our overall goal is the definition of novel Fourier-based and graph filters induced by rational polynomials for graph processing, which generalise polynomial filters and the Fourier transform to non-euclidean domains. For the efficient evaluation of discrete spectral Fourier-based and wavelet operators, we introduce a spectrum-free approach, which requires the solution of a small set of sparse, symmetric, well-conditioned linear systems and is oblivious of the evaluation of the Laplacian or kernel spectrum. Approximating arbitrary graph filters with rational polynomials provides a more accurate and numerically stable alternative with respect to polynomials. To achieve these goals, we also study the link between spectral operators, wavelets, and filtered convolution with integral operators induced by spectral kernels. According to our tests, main advantages of the proposed approach are (i) its generality with respect to the input data (e.g., graphs, 3D shapes), applications (e.g., signal reconstruction and smoothing, shape correspondence), and filters (e.g., polynomial, rational polynomial), and (ii) a spectrum-free computation with a generally low computational cost and storage overhead.

Fourier-Based and Rational Graph Filters for Spectral Processing

Patane Giuseppe
Primo
2023

Abstract

Data are represented as graphs in a wide range of applications, such as Computer Vision (e.g., images) and Graphics (e.g., 3D meshes), network analysis (e.g., social networks), and bio-informatics (e.g., molecules). In this context, our overall goal is the definition of novel Fourier-based and graph filters induced by rational polynomials for graph processing, which generalise polynomial filters and the Fourier transform to non-euclidean domains. For the efficient evaluation of discrete spectral Fourier-based and wavelet operators, we introduce a spectrum-free approach, which requires the solution of a small set of sparse, symmetric, well-conditioned linear systems and is oblivious of the evaluation of the Laplacian or kernel spectrum. Approximating arbitrary graph filters with rational polynomials provides a more accurate and numerically stable alternative with respect to polynomials. To achieve these goals, we also study the link between spectral operators, wavelets, and filtered convolution with integral operators induced by spectral kernels. According to our tests, main advantages of the proposed approach are (i) its generality with respect to the input data (e.g., graphs, 3D shapes), applications (e.g., signal reconstruction and smoothing, shape correspondence), and filters (e.g., polynomial, rational polynomial), and (ii) a spectrum-free computation with a generally low computational cost and storage overhead.
2023
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI - Sede Secondaria Genova
Chebyshev rational polynomials
frequency filtering
graph Fourier transform
graphs
heat kernel
kernels
Laplacian spectrum
spectral graph processing
File in questo prodotto:
File Dimensione Formato  
Fourier-Based_and_Rational_Graph_Filters_for_Spectral_Processing.pdf

accesso aperto

Descrizione: Fourier-Based and Rational Graph Filters for Spectral Processing
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.74 MB
Formato Adobe PDF
3.74 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/529881
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact