We delve into the interplay between network's symmetry and functioning for a generic class of dynamical systems. Primarily, we focus on a class of systems that characterize the spreading process, such as the spread of epidemics in complex networks, where the coupling configuration is nonlinear rather than diffusive. Through theoretical and numerical analysis, we establish a compelling connection between the symmetry of the graph and the trajectories followed by the dynamical processes for those nodes forming symmetry orbits and displaying identical eigenvector centrality. In particular, we are able to show that when the initial transitory states are removed, the symmetric group of nodes respond synchronously; nonetheless, they maintain a constant distance from each other and hence follow splay states. We have verified this phenomenon once more using two distinct kinds of networks. In one instance, every node takes part in nontrivial clusters. In the alternative scenario, we create symmetric orbits as per our target. The cluster nodes show splay states in both situations.

Symmetry invariance in nonlinear dynamical complex networks

Boccaletti, Stefano;
2024

Abstract

We delve into the interplay between network's symmetry and functioning for a generic class of dynamical systems. Primarily, we focus on a class of systems that characterize the spreading process, such as the spread of epidemics in complex networks, where the coupling configuration is nonlinear rather than diffusive. Through theoretical and numerical analysis, we establish a compelling connection between the symmetry of the graph and the trajectories followed by the dynamical processes for those nodes forming symmetry orbits and displaying identical eigenvector centrality. In particular, we are able to show that when the initial transitory states are removed, the symmetric group of nodes respond synchronously; nonetheless, they maintain a constant distance from each other and hence follow splay states. We have verified this phenomenon once more using two distinct kinds of networks. In one instance, every node takes part in nontrivial clusters. In the alternative scenario, we create symmetric orbits as per our target. The cluster nodes show splay states in both situations.
2024
Istituto dei Sistemi Complessi - ISC
Complex networks
Spreading
Symmetry
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S096007792400554X-main.pdf

solo utenti autorizzati

Descrizione: Symmetry invariance in nonlinear dynamical complex networks
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.08 MB
Formato Adobe PDF
2.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/529947
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact