The interactions between the components of many real-world systems are best modelled by networks with multiple layers. Different theories have been proposed to explain how multilayered connections affect the linear stability of synchronization in dynamical systems. However, the resulting equations are computationally expensive, and therefore difficult, if not impossible, to solve for large systems. To bridge this gap, we develop a mean-field theory of synchronization for networks with multiple interaction layers. By assuming quasi-identical layers, we obtain accurate assessments of synchronization stability that are comparable with the exact results. In fact, the accuracy of our theory remains high even for networks with very dissimilar layers, thus posing a general question about the mean-field nature of synchronization stability in multilayer networks. Moreover, the computational complexity of our approach is only quadratic in the number of nodes, thereby allowing the study of systems whose investigation was thus far precluded.

Mean-field nature of synchronization stability in networks with multiple interaction layers

Boccaletti, Stefano
2022

Abstract

The interactions between the components of many real-world systems are best modelled by networks with multiple layers. Different theories have been proposed to explain how multilayered connections affect the linear stability of synchronization in dynamical systems. However, the resulting equations are computationally expensive, and therefore difficult, if not impossible, to solve for large systems. To bridge this gap, we develop a mean-field theory of synchronization for networks with multiple interaction layers. By assuming quasi-identical layers, we obtain accurate assessments of synchronization stability that are comparable with the exact results. In fact, the accuracy of our theory remains high even for networks with very dissimilar layers, thus posing a general question about the mean-field nature of synchronization stability in multilayer networks. Moreover, the computational complexity of our approach is only quadratic in the number of nodes, thereby allowing the study of systems whose investigation was thus far precluded.
2022
Istituto dei Sistemi Complessi - ISC
--
File in questo prodotto:
File Dimensione Formato  
s42005-022-00897-0.pdf

accesso aperto

Descrizione: Mean-field nature of synchronization stability in networks with multiple interaction layers
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 649.47 kB
Formato Adobe PDF
649.47 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/529956
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact