The article outlines the initial findings of the "APEMAIA" project, funded by the Italian Space Agency in support to NASA JPL’s Multi-Angle Imager for Aerosols (MAIA) mission. In response to mounting evidence of particulate matter’s (PM) adverse health effects, the study aims to improve spatio-temporal variability representation of PM10 concentrations within urban areas. While air quality monitors offer high accuracy, they often fall short of comprehensive area monitoring. The study suggests employing Machine Learning (ML) techniques to model daily intra-urban PM10 using AOD satellite data from sources like Sentinel-3, MODIS and future MAIA data. To better understand spatio-temporal PM changes, the approach integrates supplementary factors, including meteorological data, land cover, urban morphology, socio-economic factors, and variables from auxiliary layers offering insights into vehicle traffic. Testing various Random Forest model configurations on Bari (southern Italy) using ARPA Puglia 2019-2022 PM10 reference data yielded an R 2 value exceeding 0.77.

Advancing Intra-Urban PM10 Concentration Patterns in Bari City: Insights from the Apemaia Project

Aquilino, Mariella
;
Maggi, Sabino;Fuina, Silvana;Tarantino, Cristina;Carbone, Francesco;Pirrone, Nicola;Schipa, I.;Adamo, Maria
2024

Abstract

The article outlines the initial findings of the "APEMAIA" project, funded by the Italian Space Agency in support to NASA JPL’s Multi-Angle Imager for Aerosols (MAIA) mission. In response to mounting evidence of particulate matter’s (PM) adverse health effects, the study aims to improve spatio-temporal variability representation of PM10 concentrations within urban areas. While air quality monitors offer high accuracy, they often fall short of comprehensive area monitoring. The study suggests employing Machine Learning (ML) techniques to model daily intra-urban PM10 using AOD satellite data from sources like Sentinel-3, MODIS and future MAIA data. To better understand spatio-temporal PM changes, the approach integrates supplementary factors, including meteorological data, land cover, urban morphology, socio-economic factors, and variables from auxiliary layers offering insights into vehicle traffic. Testing various Random Forest model configurations on Bari (southern Italy) using ARPA Puglia 2019-2022 PM10 reference data yielded an R 2 value exceeding 0.77.
2024
Istituto sull'Inquinamento Atmosferico - IIA - Sede Secondaria Bari
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
9798350360325
Training;Temperature sensors;Satellites;Accuracy;Atmospheric modeling;Urban areas;Data models;Particulate Matter;Aerosol Optical Depth;Machine learning;APEMAIA project;Intra-urban scale
File in questo prodotto:
File Dimensione Formato  
20240525082007_683906_5351.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Altro tipo di licenza
Dimensione 659.73 kB
Formato Adobe PDF
659.73 kB Adobe PDF Visualizza/Apri
Advancing_Intra-Urban_PM10_Concentration_Patterns_in_Bari_City_Insights_from_the_Apemaia_Project.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/530071
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact