The ability to predict wind is crucial for both energy production and weather forecasting. Mechanistic models that form the basis of traditional forecasting perform poorly near the ground. Here we take an alternative data-driven approach based on supervised learning. We analyze massive datasets of wind measured from anemometers located at 10 m height in 32 locations in central and north-west Italy. We train supervised learning algorithms using the past history of wind to predict its value at future horizons. Using data from single locations and horizons, we compare systematically several algorithms where we vary the input/output variables, the memory and the linear vs non-linear model. We then compare performance of the best algorithms across all locations and forecasting horizons. We find that the optimal design as well as its performance change with the location. We demonstrate that the presence of a diurnal cycle provides a rationale to understand this variation. We conclude with a systematic comparison with state of the art algorithms. When focusing on publicly available datasets, our algorithm improves performance of 0.3 m/s on average. In the aggregate, these comparisons show that, when the model is accurately designed, shallow algorithms are competitive with deep architectures.

Physics informed machine learning for wind speed prediction

Lagomarsino Oneto D.
Primo
;
Verri A.;
2023

Abstract

The ability to predict wind is crucial for both energy production and weather forecasting. Mechanistic models that form the basis of traditional forecasting perform poorly near the ground. Here we take an alternative data-driven approach based on supervised learning. We analyze massive datasets of wind measured from anemometers located at 10 m height in 32 locations in central and north-west Italy. We train supervised learning algorithms using the past history of wind to predict its value at future horizons. Using data from single locations and horizons, we compare systematically several algorithms where we vary the input/output variables, the memory and the linear vs non-linear model. We then compare performance of the best algorithms across all locations and forecasting horizons. We find that the optimal design as well as its performance change with the location. We demonstrate that the presence of a diurnal cycle provides a rationale to understand this variation. We conclude with a systematic comparison with state of the art algorithms. When focusing on publicly available datasets, our algorithm improves performance of 0.3 m/s on average. In the aggregate, these comparisons show that, when the model is accurately designed, shallow algorithms are competitive with deep architectures.
2023
Istituto di Scienze Marine - ISMAR
Istituto di Scienze Marine - ISMAR - Sede Secondaria Lerici
Anemometers
Data-driven models
Supervised learning
Temporal series
Wind forecasting
File in questo prodotto:
File Dimensione Formato  
Lagomarsino-Oneto et at 2023 - Physics informed machine learning for wind speed prediction.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.08 MB
Formato Adobe PDF
2.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/530181
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact