Rough and porous Ni layers have been obtained by cathodic deposition from a NiCl2, NH4Cl solution, at high current density. Characterisation by SEM has shown that they consisted of micro-dendrites separated by pores with a typical diameter of 1 mgrm. In addition, circular hollows (10-100 mgrm in diameter) were found on the deposit surface; their density varied with the deposition current density and deposition charge. The surface roughness of the Ni deposits, measured by EIS, was found to increase roughly linearly with the deposition charge, and to be little dependent on current density, provided a threshold value was exceeded. The oxygen evolution reaction has been studied on these electrodes by simultaneous real-time measurements of potential and electrolyte resistance fluctuations. The analysis of the electrochemical noise indicated that the dimensions of oxygen bubbles detaching from the electrodes slightly increased with the deposit surface roughness. It is not clear, however, whether or not this increase was associated with the effect of the small (1 mgrm) or the large (10-100 mgrm) features on the electrode-bubble interactions.

Oxygen evolution on electrodes of different roughness: An electrochemical noise study

Musiani M;
2004

Abstract

Rough and porous Ni layers have been obtained by cathodic deposition from a NiCl2, NH4Cl solution, at high current density. Characterisation by SEM has shown that they consisted of micro-dendrites separated by pores with a typical diameter of 1 mgrm. In addition, circular hollows (10-100 mgrm in diameter) were found on the deposit surface; their density varied with the deposition current density and deposition charge. The surface roughness of the Ni deposits, measured by EIS, was found to increase roughly linearly with the deposition charge, and to be little dependent on current density, provided a threshold value was exceeded. The oxygen evolution reaction has been studied on these electrodes by simultaneous real-time measurements of potential and electrolyte resistance fluctuations. The analysis of the electrochemical noise indicated that the dimensions of oxygen bubbles detaching from the electrodes slightly increased with the deposit surface roughness. It is not clear, however, whether or not this increase was associated with the effect of the small (1 mgrm) or the large (10-100 mgrm) features on the electrode-bubble interactions.
2004
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Electrodeposition
Impedance
Oxygen
Nickel
Surface roughness
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/53044
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? ND
social impact