This paper wants to stress the importance of human movement monitoring to prevent musculoskeletal disorders by proposing the WGD—Working Gesture Dataset, a publicly available dataset of assembly line working gestures that aims to be used for worker’s kinematic analysis. It contains kinematic data acquired from healthy subjects performing assembly line working activities using an optoelectronic motion capture system. The acquired data were used to extract quantitative indicators to assess how the working tasks were performed and to detect useful information to estimate the exposure to the factors that may contribute to the onset of musculoskeletal disorders. The obtained results demonstrate that the proposed indicators can be exploited to early detect incorrect gestures and postures and, consequently to prevent work-related disorders. The approach is general and independent on the adopted motion analysis system. It wants to provide indications for safely performing working activities. For example, the proposed WGD can also be used to evaluate the kinematics of workers in real working environments thanks to the adoption of unobtrusive measuring systems, such as wearable sensors through the extracted indicators and thresholds.

The WGD—A dataset of assembly line working gestures for ergonomic analysis and work-related injuries prevention

Tamantini C.
Primo
;
2021

Abstract

This paper wants to stress the importance of human movement monitoring to prevent musculoskeletal disorders by proposing the WGD—Working Gesture Dataset, a publicly available dataset of assembly line working gestures that aims to be used for worker’s kinematic analysis. It contains kinematic data acquired from healthy subjects performing assembly line working activities using an optoelectronic motion capture system. The acquired data were used to extract quantitative indicators to assess how the working tasks were performed and to detect useful information to estimate the exposure to the factors that may contribute to the onset of musculoskeletal disorders. The obtained results demonstrate that the proposed indicators can be exploited to early detect incorrect gestures and postures and, consequently to prevent work-related disorders. The approach is general and independent on the adopted motion analysis system. It wants to provide indications for safely performing working activities. For example, the proposed WGD can also be used to evaluate the kinematics of workers in real working environments thanks to the adoption of unobtrusive measuring systems, such as wearable sensors through the extracted indicators and thresholds.
2021
Istituto di Scienze e Tecnologie della Cognizione - ISTC
Human motion capture
Kinematics
Working activities
File in questo prodotto:
File Dimensione Formato  
2021_SensorsMDPI.pdf

accesso aperto

Descrizione: Tamantini, C.; Cordella, F.; Lauretti, C.; Zollo, L. The WGD—A Dataset of Assembly Line Working Gestures for Ergonomic Analysis and Work-Related Injuries Prevention. Sensors 2021, 21, 7600. https://doi.org/10.3390/s21227600
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.51 MB
Formato Adobe PDF
3.51 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/530501
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact