Theoretical models for small ferroelectric particles predict a progressive decrease of the Curie temperature, spontaneous lattice strain, and polarization until the critical size corresponding to transition to the cubic phase and disappearance of ferroelectricity is reached. In contrast, the behavior of nanocrystalline BaTiO3 ceramics with a grain size of 30 nm is dominated by extrinsic effects related to the grain boundaries which mask the expected downscaling of properties. While the noncubic crystal structure, the high dielectric constant = 1600 and the variation of permittivity with temperature suggest a ferroelectric behavior, very slim, and nearly linear polarization hysteresis loops are observed. Evidence for the existence of a ferroelectric domain structure with domains extending over several grains and of polarization switching at local scale is given by piezoresponse force microscopy. The suppression of macroscopic ferroelectric hysteresis and switching originates from a frozen domain structure stable under an external field owing to the effects exerted by the grain boundaries, such as the clamping of the domain walls and the hindrance of polarization switching. Furthermore, the depolarization field originated by the low-permittivity nonferroelectric grain boundaries can cause a significant reduction of polarization. If the grain size is small enough, the ceramic is expected to undergo a

High dielectric constant and frozen macroscopic polarization in dense nanocrystalline BaTiO3 ceramics

Buscaglia M T;
2006

Abstract

Theoretical models for small ferroelectric particles predict a progressive decrease of the Curie temperature, spontaneous lattice strain, and polarization until the critical size corresponding to transition to the cubic phase and disappearance of ferroelectricity is reached. In contrast, the behavior of nanocrystalline BaTiO3 ceramics with a grain size of 30 nm is dominated by extrinsic effects related to the grain boundaries which mask the expected downscaling of properties. While the noncubic crystal structure, the high dielectric constant = 1600 and the variation of permittivity with temperature suggest a ferroelectric behavior, very slim, and nearly linear polarization hysteresis loops are observed. Evidence for the existence of a ferroelectric domain structure with domains extending over several grains and of polarization switching at local scale is given by piezoresponse force microscopy. The suppression of macroscopic ferroelectric hysteresis and switching originates from a frozen domain structure stable under an external field owing to the effects exerted by the grain boundaries, such as the clamping of the domain walls and the hindrance of polarization switching. Furthermore, the depolarization field originated by the low-permittivity nonferroelectric grain boundaries can cause a significant reduction of polarization. If the grain size is small enough, the ceramic is expected to undergo a
2006
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
BaTiO3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/53059
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact