Due to the low temperature, the Antarctic marine environment is challenging for protein functioning. Cold-adapted organisms have evolved proteins endowed with higher flexibility and lower stability in comparison to their thermophilic homologs, resulting in enhanced reaction rates at low temperatures. The Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125) genome is one of the few examples of coexistence of multiple hemoglobin genes encoding, among others, two constitutively transcribed 2/2 hemoglobins (2/2Hbs), also named truncated Hbs (TrHbs), belonging to the Group II (or O), annotated as PSHAa0030 and PSHAa2217. In this work, we describe the ligand binding kinetics and their interrelationship with the dynamical properties of globin Ph-2/2HbO-2217 by combining experimental and computational approaches and implementing a new computational method to retrieve information from molecular dynamic trajectories. We show that our approach allows us to identify docking sites within the protein matrix that are potentially able to transiently accommodate ligands and migration pathways connecting them. Consistently with ligand rebinding studies, our modeling suggests that the distal heme pocket is connected to the solvent through a low energy barrier, while inner cavities play only a minor role in modulating rebinding kinetics.

Kinetic and dynamical properties of truncated hemoglobins of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125

Giordano D.;Verde C.;Viappiani C.;Abbruzzetti S.
2024

Abstract

Due to the low temperature, the Antarctic marine environment is challenging for protein functioning. Cold-adapted organisms have evolved proteins endowed with higher flexibility and lower stability in comparison to their thermophilic homologs, resulting in enhanced reaction rates at low temperatures. The Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125) genome is one of the few examples of coexistence of multiple hemoglobin genes encoding, among others, two constitutively transcribed 2/2 hemoglobins (2/2Hbs), also named truncated Hbs (TrHbs), belonging to the Group II (or O), annotated as PSHAa0030 and PSHAa2217. In this work, we describe the ligand binding kinetics and their interrelationship with the dynamical properties of globin Ph-2/2HbO-2217 by combining experimental and computational approaches and implementing a new computational method to retrieve information from molecular dynamic trajectories. We show that our approach allows us to identify docking sites within the protein matrix that are potentially able to transiently accommodate ligands and migration pathways connecting them. Consistently with ligand rebinding studies, our modeling suggests that the distal heme pocket is connected to the solvent through a low energy barrier, while inner cavities play only a minor role in modulating rebinding kinetics.
2024
Istituto di Bioscienze e Biorisorse - IBBR - Sede Secondaria Napoli
Istituto Nanoscienze - NANO
CO rebinding kinetics
bacterial globin
cold adaptation
molecular dynamic simulations
oxidative/nitrosative stress
File in questo prodotto:
File Dimensione Formato  
de Armiño et al 2024 Protein Science_compresso.pdf

accesso aperto

Descrizione: Kinetic and dynamical properties of truncated hemoglobins of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 750.72 kB
Formato Adobe PDF
750.72 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/531142
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact