: Hybrid perovskites are well-known for their optoelectronic and photovoltaic properties. Molecular dynamics simulations allow the study of these soft and ionic crystals by including dynamical effects (e.g., molecular rotations, octahedra tilting, ionic diffusion and hysteresis), yet the high computational cost restricts the use of accurate ab initio forces for bulk or small atomic systems. Hence, great interest exists in the development of classical force-fields for hybrid perovskites of low and linear scaling computational cost, via both empirical methods and machine-learning. This work aims at extending the transferability of our MYP0 model, which has been successfully tailored to methylammonium lead iodide (MAPI) and applied to the study of molecular rotations, vibrations, diffusion of defects, and many other properties. The extended model, named MYP2, improves the description of inorganic or hybrid fragments and the processes of crystal formation while preserving a good description of bulk properties. More importantly, it allows for the direct simulation of the crystal growth of cubic MAPI from deposition of PbI and MAI precursors on the surfaces. Our findings pave the way toward classical force-fields able to model the microstructure evolution of hybrid perovskites and the crystalline synthesis from deposition in vacuo.

Many-Body MYP2 Force-Field: Toward the Crystal Growth Modeling of Hybrid Perovskites

Alessandro Mattoni
;
Simone Argiolas;Alessio Filippetti;Claudia Caddeo
2024

Abstract

: Hybrid perovskites are well-known for their optoelectronic and photovoltaic properties. Molecular dynamics simulations allow the study of these soft and ionic crystals by including dynamical effects (e.g., molecular rotations, octahedra tilting, ionic diffusion and hysteresis), yet the high computational cost restricts the use of accurate ab initio forces for bulk or small atomic systems. Hence, great interest exists in the development of classical force-fields for hybrid perovskites of low and linear scaling computational cost, via both empirical methods and machine-learning. This work aims at extending the transferability of our MYP0 model, which has been successfully tailored to methylammonium lead iodide (MAPI) and applied to the study of molecular rotations, vibrations, diffusion of defects, and many other properties. The extended model, named MYP2, improves the description of inorganic or hybrid fragments and the processes of crystal formation while preserving a good description of bulk properties. More importantly, it allows for the direct simulation of the crystal growth of cubic MAPI from deposition of PbI and MAI precursors on the surfaces. Our findings pave the way toward classical force-fields able to model the microstructure evolution of hybrid perovskites and the crystalline synthesis from deposition in vacuo.
2024
Istituto Officina dei Materiali - IOM - Sede Secondaria Monserrato (CA)
hybrid perovskites
classical force fields
File in questo prodotto:
File Dimensione Formato  
mattoni-preprint.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Altro tipo di licenza
Dimensione 9.38 MB
Formato Adobe PDF
9.38 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/531242
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact