The selection of cuts to be added to the current LP relaxation is one of the most critical task in Branch-and-Cut methods, since it strongly affects the performances of the algorithm. Recently, machine learning techniques have become popular to define effective cut selection strategies. In this paper we explore the possibility of selecting cuts by ranking them via support vector regression.

Machine Learning Techniques for Branch-and-Cut Methods: The Selection of Cutting Planes

Marcello Sammarra
Membro del Collaboration Group
2025

Abstract

The selection of cuts to be added to the current LP relaxation is one of the most critical task in Branch-and-Cut methods, since it strongly affects the performances of the algorithm. Recently, machine learning techniques have become popular to define effective cut selection strategies. In this paper we explore the possibility of selecting cuts by ranking them via support vector regression.
2025
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
9783031812408
9783031812415
regression
integer linear programs
machine learning
File in questo prodotto:
File Dimensione Formato  
PaperNumtaGMS23-R1.pdf

solo utenti autorizzati

Descrizione: This is the Author Accepted Manuscript (postprint) version of the following paper: (Giallombardo, G., Miglionico, G., Sammarra, M. (2025) Machine Learning Techniques for Branch-and-Cut Methods: The Selection of Cutting Planes) peer-reviewed and accepted for publication in (Sergeyev, Y.D., Kvasov, D.E., Astorino, A. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2023. Lecture Notes in Computer Science, vol 14476. Springer, Cham https://doi.org/10.1007/978-3-031-81241-5_25)
Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 310.22 kB
Formato Adobe PDF
310.22 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/531322
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact