In the framework of the strategy for the development and the procurement of the NB systems for ITER, it has been decided to build in Padova a test facility, including two experimental devices: a full size plasma source with low voltage extraction and a full size NB injector at full beam power (1 MV). These two different devices will separately address the main scientific and technological issues of the 17 MW NB injector for ITER. In particular the full size plasma source of negative ions will address the ITER performance requirements in terms of current density and uniformity, limitation of the electron/ion ratio and stationary operation at full current with high reliability and constant performances for the whole operating time up to 1 h. The required negative ion current density to be extracted from the plasma source ranges from 290 A/m2 in D2 (D-) and 350 A/m2 in H2 (H-) and these values should be obtained at the lowest admissible neutral pressure in the plasma source volume, nominally at 0.3 Pa. The electron to ion ratio should be limited to less than 1 and the admissible ion inhomogeneity extracted from the grids should be better than 10% on the whole plasma cross-section having a surface exposed to the extraction grid of the order of 1 m2. The main design choices will be presented in the paper as well as an overview of the design of the main components and systems.
The ITER full size plasma source device design
V Antoni;A De Lorenzi;E Gaio;L Grando;A Luchetta;G Manduchi;R Pasqualotto;R Piovan;N Pomaro;G Serianni;M Spolaore;C Taliercio;V Toigo;M Valisa;P Zaccaria;
2009
Abstract
In the framework of the strategy for the development and the procurement of the NB systems for ITER, it has been decided to build in Padova a test facility, including two experimental devices: a full size plasma source with low voltage extraction and a full size NB injector at full beam power (1 MV). These two different devices will separately address the main scientific and technological issues of the 17 MW NB injector for ITER. In particular the full size plasma source of negative ions will address the ITER performance requirements in terms of current density and uniformity, limitation of the electron/ion ratio and stationary operation at full current with high reliability and constant performances for the whole operating time up to 1 h. The required negative ion current density to be extracted from the plasma source ranges from 290 A/m2 in D2 (D-) and 350 A/m2 in H2 (H-) and these values should be obtained at the lowest admissible neutral pressure in the plasma source volume, nominally at 0.3 Pa. The electron to ion ratio should be limited to less than 1 and the admissible ion inhomogeneity extracted from the grids should be better than 10% on the whole plasma cross-section having a surface exposed to the extraction grid of the order of 1 m2. The main design choices will be presented in the paper as well as an overview of the design of the main components and systems.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.