Single helical axis states obtained in high current reversed field pinch plasmas display, aside from a dominant mode in the m = 1 spectrum, also a dominant m = 0 mode, with the same toroidal mode number as the m = 1 one. The two modes have a fixed phase relationship. The island chain created by the m = 0 mode across the reversal surface gives rise, at shallow reversal of the toroidal field, to an X-point structure which separates the last closed flux surface from the first wall, creating a divertor-like configuration. The plasma-wall interaction is found to be related to the connection length of the field lines intercepting the wall, which displays a pattern modulated by the dominant mode toroidal periodicity. This configuration, which occurs only for shallow toroidal field reversal, could be exploited to realize an island divertor in analogy to stellarators.
The plasma boundary in single helical axis RFP plasmas
Martines E;Innocente P;Spolaore M
2010
Abstract
Single helical axis states obtained in high current reversed field pinch plasmas display, aside from a dominant mode in the m = 1 spectrum, also a dominant m = 0 mode, with the same toroidal mode number as the m = 1 one. The two modes have a fixed phase relationship. The island chain created by the m = 0 mode across the reversal surface gives rise, at shallow reversal of the toroidal field, to an X-point structure which separates the last closed flux surface from the first wall, creating a divertor-like configuration. The plasma-wall interaction is found to be related to the connection length of the field lines intercepting the wall, which displays a pattern modulated by the dominant mode toroidal periodicity. This configuration, which occurs only for shallow toroidal field reversal, could be exploited to realize an island divertor in analogy to stellarators.File | Dimensione | Formato | |
---|---|---|---|
prod_25995-doc_18290.pdf
non disponibili
Descrizione: Articolo pubblicato
Dimensione
3.58 MB
Formato
Adobe PDF
|
3.58 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.