Intrinsically disordered proteins and regions (IDP/IDRs) are ubiquitous across all domains of life. Characterized by a lack of a stable tertiary structure, IDP/IDRs populate a diverse set of transiently formed structural states that can promiscuously adapt upon binding with specific interaction partners and/or certain alterations in environmental conditions. This malleability is foundational for their role as tunable interaction hubs in core cellular processes such as signaling, transcription, and translation. Tracing the conformational ensemble of an IDP/IDR and its perturbation in response to regulatory cues is thus paramount for illuminating its function. However, the conformational heterogeneity of IDP/IDRs poses several challenges. Here, we review experimental and computational methods devised to disentangle the conformational landscape of IDP/IDRs, highlighting recent computational advances that permit proteome-wide scans of IDP/IDRs conformations. We briefly evaluate selected computational methods using the disordered N-terminal of the human copper transporter 1 as a test case and outline further challenges in IDP/IDRs ensemble prediction.
Predicting Conformational Ensembles of Intrinsically Disordered Proteins: From Molecular Dynamics to Machine Learning
Aupic J.
;Pokorna P.;Magistrato A.
2024
Abstract
Intrinsically disordered proteins and regions (IDP/IDRs) are ubiquitous across all domains of life. Characterized by a lack of a stable tertiary structure, IDP/IDRs populate a diverse set of transiently formed structural states that can promiscuously adapt upon binding with specific interaction partners and/or certain alterations in environmental conditions. This malleability is foundational for their role as tunable interaction hubs in core cellular processes such as signaling, transcription, and translation. Tracing the conformational ensemble of an IDP/IDR and its perturbation in response to regulatory cues is thus paramount for illuminating its function. However, the conformational heterogeneity of IDP/IDRs poses several challenges. Here, we review experimental and computational methods devised to disentangle the conformational landscape of IDP/IDRs, highlighting recent computational advances that permit proteome-wide scans of IDP/IDRs conformations. We briefly evaluate selected computational methods using the disordered N-terminal of the human copper transporter 1 as a test case and outline further challenges in IDP/IDRs ensemble prediction.File | Dimensione | Formato | |
---|---|---|---|
Perspective_revv2-AM.pdf
embargo fino al 01/08/2025
Descrizione: This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in The Journal of Physical Chemistry Letters, copyright © ACS 2024 after peer review. To access the final edited and published work see https://doi.org/10.1021/acs.jpclett.4c01544
Tipologia:
Documento in Post-print
Licenza:
Altro tipo di licenza
Dimensione
1.49 MB
Formato
Adobe PDF
|
1.49 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.