The spliceosome machinery catalyzes precursor messenger (pre-m)RNA splicing. In each cycle, the spliceosome experiences massive compositional and conformational remodeling fueled by the concerted action of specific RNA-dependent ATPases/helicases. Intriguingly, these enzymes are allosterically activated to perform ATP hydrolysis and trigger helicase activity only upon pre-mRNA binding. Yet, the molecular mechanism underlying the RNA-driven regulation of their ATPase function remains elusive. Here, we focus on the Prp2 ATPase/helicase which contributes to reshaping the spliceosome into its catalytic competent state. By performing classical and quantum-classical molecular dynamics simulations, we unprecedentedly unlock the molecular terms governing the Prp2 ATPase/helicase function. Namely, we dissect the molecular mechanism of ATP hydrolysis, and we disclose that RNA binding allosterically triggers the formation of a set of interactions linking the RNA binding tunnel to the catalytic site. This activates the Prp2’s ATPase function by optimally placing the nucleophilic water and the general base of the enzymatic process to perform ATP hydrolysis. The key structural motifs, mechanically coupling RNA gripping and the ATPase/helicase functions, are conserved across all DExH-box helicases. This mechanism could thus be broadly applicable to all DExH-box helicase family.
Molecular Basis of RNA-Driven ATP Hydrolysis in DExH-Box Helicases
Magistrato A.
2023
Abstract
The spliceosome machinery catalyzes precursor messenger (pre-m)RNA splicing. In each cycle, the spliceosome experiences massive compositional and conformational remodeling fueled by the concerted action of specific RNA-dependent ATPases/helicases. Intriguingly, these enzymes are allosterically activated to perform ATP hydrolysis and trigger helicase activity only upon pre-mRNA binding. Yet, the molecular mechanism underlying the RNA-driven regulation of their ATPase function remains elusive. Here, we focus on the Prp2 ATPase/helicase which contributes to reshaping the spliceosome into its catalytic competent state. By performing classical and quantum-classical molecular dynamics simulations, we unprecedentedly unlock the molecular terms governing the Prp2 ATPase/helicase function. Namely, we dissect the molecular mechanism of ATP hydrolysis, and we disclose that RNA binding allosterically triggers the formation of a set of interactions linking the RNA binding tunnel to the catalytic site. This activates the Prp2’s ATPase function by optimally placing the nucleophilic water and the general base of the enzymatic process to perform ATP hydrolysis. The key structural motifs, mechanically coupling RNA gripping and the ATPase/helicase functions, are conserved across all DExH-box helicases. This mechanism could thus be broadly applicable to all DExH-box helicase family.| File | Dimensione | Formato | |
|---|---|---|---|
|
MS_prp2_last_clean (1).pdf
accesso aperto
Descrizione: This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of the American Chemical Society 2023, 145, 12, 6691 , copyright © ACS 2023 after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/jacs.2c11980
Tipologia:
Documento in Post-print
Licenza:
Altro tipo di licenza
Dimensione
10.74 MB
Formato
Adobe PDF
|
10.74 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


